Filling links and spines in 3-manifolds

IF 0.7 4区 数学 Q2 MATHEMATICS
Freedman,Michael, Krushkal,Vyacheslav, Leininger,Christopher J., Reid,Alan W.
{"title":"Filling links and spines in 3-manifolds","authors":"Freedman,Michael, Krushkal,Vyacheslav, Leininger,Christopher J., Reid,Alan W.","doi":"10.4310/cag.2023.v31.n10.a1","DOIUrl":null,"url":null,"abstract":"We introduce and study the notion of filling links in $3$-manifolds: a link $L$ is filling in $M$ if for any $1$-spine $G$ of $M$ which is disjoint from $L$, $\\pi _{1}(G)$ injects into $\\pi _{1}(M\\smallsetminus L)$. A weaker \"$k$-filling\" version concerns injectivity modulo $k$-th term of the lower central series. For each $k\\geq 2$ we construct a $k$-filling link in the $3$-torus. The proof relies on an extension of the Stallings theorem which may be of independent interest. We discuss notions related to \"filling\" links in $3$-manifolds, and formulate several open problems. The appendix by C. Leininger and A. Reid establishes the existence of a filling hyperbolic link in any closed orientable $3$-manifold with $\\pi _{1}(M)$ of rank $2$.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"169 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n10.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce and study the notion of filling links in $3$-manifolds: a link $L$ is filling in $M$ if for any $1$-spine $G$ of $M$ which is disjoint from $L$, $\pi _{1}(G)$ injects into $\pi _{1}(M\smallsetminus L)$. A weaker "$k$-filling" version concerns injectivity modulo $k$-th term of the lower central series. For each $k\geq 2$ we construct a $k$-filling link in the $3$-torus. The proof relies on an extension of the Stallings theorem which may be of independent interest. We discuss notions related to "filling" links in $3$-manifolds, and formulate several open problems. The appendix by C. Leininger and A. Reid establishes the existence of a filling hyperbolic link in any closed orientable $3$-manifold with $\pi _{1}(M)$ of rank $2$.
三芒星中的填充链接和棘刺
我们引入并研究了$3$-manifolds中填充链接的概念:如果对于$M$中与$L$不相交的任意$1$-spine $G$,$\pi _{1}(G)$注入到$\pi _{1}(M\smallsetminus L)$中,那么链接$L$就是$M$中的填充。一个较弱的"$k$填充 "版本是关于下中心数列的 $k$-th 项的注入性。对于每一个 $k\geq 2$,我们都会在 3$-torus中构造一个 $k$ 填充链接。证明依赖于斯达林斯定理的扩展,这可能是我们感兴趣的。我们讨论了与 $3$-manifolds中的 "填充 "链接相关的概念,并提出了几个悬而未决的问题。C. Leininger 和 A. Reid 的附录证明了在任何闭合可定向$3$-manifold 中存在秩为$2$的$\pi _{1}(M)$填充双曲链路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信