On Simultaneous Approximation of Algebraic Power Series over a Finite Field

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Khalil Ayadi, Chiheb Ben Bechir, Samir Elkadri
{"title":"On Simultaneous Approximation of Algebraic Power Series over a Finite Field","authors":"Khalil Ayadi, Chiheb Ben Bechir, Samir Elkadri","doi":"10.1134/s2070046624030063","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In 1970, W. M. Schmidt [6] generalized Roth’s well-known theorem on rational approximation to a single algebraic irrational, to include simultaneous rational approximation for a given <span>\\(n\\)</span> algebraic irrationals. As no analogue of Roth’s theorem for algebraic irrational power series over a finite field exists, we will show that there is no analogue of Schmidt’s theorem for such <span>\\(n\\)</span> elements. </p>","PeriodicalId":44654,"journal":{"name":"P-Adic Numbers Ultrametric Analysis and Applications","volume":"76 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"P-Adic Numbers Ultrametric Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2070046624030063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1970, W. M. Schmidt [6] generalized Roth’s well-known theorem on rational approximation to a single algebraic irrational, to include simultaneous rational approximation for a given \(n\) algebraic irrationals. As no analogue of Roth’s theorem for algebraic irrational power series over a finite field exists, we will show that there is no analogue of Schmidt’s theorem for such \(n\) elements.

论有限域上代数幂级数的同时逼近
摘要 1970年,W. M. Schmidt[6]将Roth著名的关于单个代数无理数的有理逼近定理推广到包括给定的(n)个代数无理数的同时有理逼近。由于有限域上代数无理幂级数的 Roth 定理不存在类似的定理,我们将证明对于这样的 \(n\) 元素,Schmidt 定理也不存在类似的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
P-Adic Numbers Ultrametric Analysis and Applications
P-Adic Numbers Ultrametric Analysis and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.10
自引率
20.00%
发文量
16
期刊介绍: This is a new international interdisciplinary journal which contains original articles, short communications, and reviews on progress in various areas of pure and applied mathematics related with p-adic, adelic and ultrametric methods, including: mathematical physics, quantum theory, string theory, cosmology, nanoscience, life sciences; mathematical analysis, number theory, algebraic geometry, non-Archimedean and non-commutative geometry, theory of finite fields and rings, representation theory, functional analysis and graph theory; classical and quantum information, computer science, cryptography, image analysis, cognitive models, neural networks and bioinformatics; complex systems, dynamical systems, stochastic processes, hierarchy structures, modeling, control theory, economics and sociology; mesoscopic and nano systems, disordered and chaotic systems, spin glasses, macromolecules, molecular dynamics, biopolymers, genomics and biology; and other related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信