{"title":"Four-manifolds defined by vector-colorings of simple polytopes","authors":"Nikolai Erokhovets","doi":"arxiv-2407.20575","DOIUrl":null,"url":null,"abstract":"We consider (non-necessarily free) actions of subgroups $H\\subset \\mathbb\nZ_2^m$ on the real moment-angle manifold $\\mathbb R\\mathcal{Z}_P$ over a simple\n$n$-polytope $P$. The orbit space $N(P,H)=\\mathbb R\\mathcal{Z}_P/H$ has an\naction of $\\mathbb Z_2^m/H$. For general $n$ we introduce the notion of a\nHamiltonian $\\mathcal{C}(n,k)$-subcomplex generalizing the three-dimensional\nnotions of a Hamiltonian cycle, theta- and $K_4$-subgraphs. Each\n$\\mathcal{C}(n,k)$-subcomplex $C\\subset \\partial P$ corresponds to a subgroup\n$H_C$ such that $N(P,H_C)\\simeq S^n$. We prove that in dimensions $n\\leqslant\n4$ this correspondence is a bijection. Any subgroup $H\\subset \\mathbb Z_2^m$\ndefines a complex $\\mathcal{C}(P,H)\\subset \\partial P$. We prove that each\nHamiltonian $\\mathcal{C}(n,k)$-subcomplex $C\\subset \\mathcal{C}(P,H)$ inducing\n$H$ corresponds to a hyperelliptic involution $\\tau_C\\in\\mathbb Z_2^m/H$ on the\nmanifold $N(P,H)$ (that is, an involution with the orbit space homeomorphic to\n$S^n$) and in dimensions $n\\leqslant 4$ this correspondence is a bijection. We\nprove that for the geometries $\\mathbb X= \\mathbb S^4$, $\\mathbb\nS^3\\times\\mathbb R$, $\\mathbb S^2\\times \\mathbb S^2$, $\\mathbb S^2\\times\n\\mathbb R^2$, $\\mathbb S^2\\times \\mathbb L^2$, and $\\mathbb L^2\\times \\mathbb\nL^2$ there exists a compact right-angled $4$-polytope $P$ with a free action of\n$H$ such that the geometric manifold $N(P,H)$ has a hyperelliptic involution in\n$\\mathbb Z_2^m/H$, and for $\\mathbb X=\\mathbb R^4$, $\\mathbb L^4$, $\\mathbb\nL^3\\times \\mathbb R$ and $\\mathbb L^2\\times \\mathbb R^2$ there are no such\npolytopes.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider (non-necessarily free) actions of subgroups $H\subset \mathbb
Z_2^m$ on the real moment-angle manifold $\mathbb R\mathcal{Z}_P$ over a simple
$n$-polytope $P$. The orbit space $N(P,H)=\mathbb R\mathcal{Z}_P/H$ has an
action of $\mathbb Z_2^m/H$. For general $n$ we introduce the notion of a
Hamiltonian $\mathcal{C}(n,k)$-subcomplex generalizing the three-dimensional
notions of a Hamiltonian cycle, theta- and $K_4$-subgraphs. Each
$\mathcal{C}(n,k)$-subcomplex $C\subset \partial P$ corresponds to a subgroup
$H_C$ such that $N(P,H_C)\simeq S^n$. We prove that in dimensions $n\leqslant
4$ this correspondence is a bijection. Any subgroup $H\subset \mathbb Z_2^m$
defines a complex $\mathcal{C}(P,H)\subset \partial P$. We prove that each
Hamiltonian $\mathcal{C}(n,k)$-subcomplex $C\subset \mathcal{C}(P,H)$ inducing
$H$ corresponds to a hyperelliptic involution $\tau_C\in\mathbb Z_2^m/H$ on the
manifold $N(P,H)$ (that is, an involution with the orbit space homeomorphic to
$S^n$) and in dimensions $n\leqslant 4$ this correspondence is a bijection. We
prove that for the geometries $\mathbb X= \mathbb S^4$, $\mathbb
S^3\times\mathbb R$, $\mathbb S^2\times \mathbb S^2$, $\mathbb S^2\times
\mathbb R^2$, $\mathbb S^2\times \mathbb L^2$, and $\mathbb L^2\times \mathbb
L^2$ there exists a compact right-angled $4$-polytope $P$ with a free action of
$H$ such that the geometric manifold $N(P,H)$ has a hyperelliptic involution in
$\mathbb Z_2^m/H$, and for $\mathbb X=\mathbb R^4$, $\mathbb L^4$, $\mathbb
L^3\times \mathbb R$ and $\mathbb L^2\times \mathbb R^2$ there are no such
polytopes.