Four-manifolds defined by vector-colorings of simple polytopes

Nikolai Erokhovets
{"title":"Four-manifolds defined by vector-colorings of simple polytopes","authors":"Nikolai Erokhovets","doi":"arxiv-2407.20575","DOIUrl":null,"url":null,"abstract":"We consider (non-necessarily free) actions of subgroups $H\\subset \\mathbb\nZ_2^m$ on the real moment-angle manifold $\\mathbb R\\mathcal{Z}_P$ over a simple\n$n$-polytope $P$. The orbit space $N(P,H)=\\mathbb R\\mathcal{Z}_P/H$ has an\naction of $\\mathbb Z_2^m/H$. For general $n$ we introduce the notion of a\nHamiltonian $\\mathcal{C}(n,k)$-subcomplex generalizing the three-dimensional\nnotions of a Hamiltonian cycle, theta- and $K_4$-subgraphs. Each\n$\\mathcal{C}(n,k)$-subcomplex $C\\subset \\partial P$ corresponds to a subgroup\n$H_C$ such that $N(P,H_C)\\simeq S^n$. We prove that in dimensions $n\\leqslant\n4$ this correspondence is a bijection. Any subgroup $H\\subset \\mathbb Z_2^m$\ndefines a complex $\\mathcal{C}(P,H)\\subset \\partial P$. We prove that each\nHamiltonian $\\mathcal{C}(n,k)$-subcomplex $C\\subset \\mathcal{C}(P,H)$ inducing\n$H$ corresponds to a hyperelliptic involution $\\tau_C\\in\\mathbb Z_2^m/H$ on the\nmanifold $N(P,H)$ (that is, an involution with the orbit space homeomorphic to\n$S^n$) and in dimensions $n\\leqslant 4$ this correspondence is a bijection. We\nprove that for the geometries $\\mathbb X= \\mathbb S^4$, $\\mathbb\nS^3\\times\\mathbb R$, $\\mathbb S^2\\times \\mathbb S^2$, $\\mathbb S^2\\times\n\\mathbb R^2$, $\\mathbb S^2\\times \\mathbb L^2$, and $\\mathbb L^2\\times \\mathbb\nL^2$ there exists a compact right-angled $4$-polytope $P$ with a free action of\n$H$ such that the geometric manifold $N(P,H)$ has a hyperelliptic involution in\n$\\mathbb Z_2^m/H$, and for $\\mathbb X=\\mathbb R^4$, $\\mathbb L^4$, $\\mathbb\nL^3\\times \\mathbb R$ and $\\mathbb L^2\\times \\mathbb R^2$ there are no such\npolytopes.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider (non-necessarily free) actions of subgroups $H\subset \mathbb Z_2^m$ on the real moment-angle manifold $\mathbb R\mathcal{Z}_P$ over a simple $n$-polytope $P$. The orbit space $N(P,H)=\mathbb R\mathcal{Z}_P/H$ has an action of $\mathbb Z_2^m/H$. For general $n$ we introduce the notion of a Hamiltonian $\mathcal{C}(n,k)$-subcomplex generalizing the three-dimensional notions of a Hamiltonian cycle, theta- and $K_4$-subgraphs. Each $\mathcal{C}(n,k)$-subcomplex $C\subset \partial P$ corresponds to a subgroup $H_C$ such that $N(P,H_C)\simeq S^n$. We prove that in dimensions $n\leqslant 4$ this correspondence is a bijection. Any subgroup $H\subset \mathbb Z_2^m$ defines a complex $\mathcal{C}(P,H)\subset \partial P$. We prove that each Hamiltonian $\mathcal{C}(n,k)$-subcomplex $C\subset \mathcal{C}(P,H)$ inducing $H$ corresponds to a hyperelliptic involution $\tau_C\in\mathbb Z_2^m/H$ on the manifold $N(P,H)$ (that is, an involution with the orbit space homeomorphic to $S^n$) and in dimensions $n\leqslant 4$ this correspondence is a bijection. We prove that for the geometries $\mathbb X= \mathbb S^4$, $\mathbb S^3\times\mathbb R$, $\mathbb S^2\times \mathbb S^2$, $\mathbb S^2\times \mathbb R^2$, $\mathbb S^2\times \mathbb L^2$, and $\mathbb L^2\times \mathbb L^2$ there exists a compact right-angled $4$-polytope $P$ with a free action of $H$ such that the geometric manifold $N(P,H)$ has a hyperelliptic involution in $\mathbb Z_2^m/H$, and for $\mathbb X=\mathbb R^4$, $\mathbb L^4$, $\mathbb L^3\times \mathbb R$ and $\mathbb L^2\times \mathbb R^2$ there are no such polytopes.
由简单多面体的向量着色定义的四曲面
我们考虑子群 $H (不一定是自由的)在简单 $n$ 多面体 $P$ 上的实矩角流形 $\mathbb R\mathcal{Z}_P$ 上的作用。轨道空间 $N(P,H)=\mathbb R\mathcal{Z}_P/H$ 具有 $\mathbb Z_2^m/H$ 的作用。对于一般的 $n$,我们引入了哈密顿$\mathcal{C}(n,k)$-子复数的概念,它概括了哈密顿循环、θ- 和 $K_4$ 子图的三维概念。每个$\mathcal{C}(n,k)$-子复数$C\subset \partial P$对应于一个子群$H_C$,使得$N(P,H_C)\simeq S^n$。我们证明在维数为 $n\leqslant4$ 时,这种对应关系是双射的。任何子群 $H (子集)都定义了一个复数 $/mathcal{C}(P,H)(子集)(部分 P$)。我们证明,诱导$H$的每个哈密顿$mathcal{C}(n,k)$-子复数$C\subset \mathcal{C}(P,H)$ 对应于他们的平面$N(P. H)$上的一个超椭圆卷积$\tau_Cin\mathbb Z_2^m/H$ (即一个超椭圆卷积)、H)$(即轨道空间同构于$S^n$的卷积),在维数$n\leqslant 4$中,这种对应关系是双射的。我们证明,对于几何图形 $\mathbb X= \mathbb S^4$, $\mathbbS^3\times\mathbb R$, $\mathbb S^2\times\mathbb S^2$, $\mathbb S^2\times\mathbb R^2$, $\mathbb S^2\times\mathbb L^2$、和 $\mathbb L^2\times\mathbbL^2$ 存在一个紧凑的直角 $4$ 多面体 $P$ 与$H$ 的自由作用,使得几何流形 $N(P. H)$ 有一个超椭圆、H)$ 在 $\mathbb Z_2^m/H$ 中有一个超椭圆内卷,而对于 $\mathbb X=\mathbb R^4$,$\mathbb L^4$,$\mathbbL^3次 \mathbb R$ 和 $\mathbb L^2次 \mathbb R^2$,没有这样的多面体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信