Positive scalar curvature with point singularities

Simone Cecchini, Georg Frenck, Rudolf Zeidler
{"title":"Positive scalar curvature with point singularities","authors":"Simone Cecchini, Georg Frenck, Rudolf Zeidler","doi":"arxiv-2407.20163","DOIUrl":null,"url":null,"abstract":"We show that in every dimension $n \\geq 8$, there exists a smooth closed\nmanifold $M^n$ which does not admit a smooth positive scalar curvature (\"psc\")\nmetric, but $M$ admits an $\\mathrm{L}^\\infty$-metric which is smooth and has\npsc outside a singular set of codimension $\\geq 8$. This provides\ncounterexamples to a conjecture of Schoen. In fact, there are such examples of\narbitrarily high dimension with only single point singularities. In addition,\nwe provide examples of $\\mathrm{L}^\\infty$-metrics on $\\mathbb{R}^n$ for\ncertain $n \\geq 8$ which are smooth and have psc outside the origin, but cannot\nbe smoothly approximated away from the origin by everywhere smooth Riemannian\nmetrics of non-negative scalar curvature. This stands in precise contrast to\nestablished smoothing results via Ricci--DeTurck flow for singular metrics with\nstronger regularity assumptions. Finally, as a positive result, we describe a\n$\\mathrm{KO}$-theoretic condition which obstructs the existence of\n$\\mathrm{L}^\\infty$-metrics that are smooth and of psc outside a finite subset.\nThis shows that closed enlargeable spin manifolds do not carry such metrics.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that in every dimension $n \geq 8$, there exists a smooth closed manifold $M^n$ which does not admit a smooth positive scalar curvature ("psc") metric, but $M$ admits an $\mathrm{L}^\infty$-metric which is smooth and has psc outside a singular set of codimension $\geq 8$. This provides counterexamples to a conjecture of Schoen. In fact, there are such examples of arbitrarily high dimension with only single point singularities. In addition, we provide examples of $\mathrm{L}^\infty$-metrics on $\mathbb{R}^n$ for certain $n \geq 8$ which are smooth and have psc outside the origin, but cannot be smoothly approximated away from the origin by everywhere smooth Riemannian metrics of non-negative scalar curvature. This stands in precise contrast to established smoothing results via Ricci--DeTurck flow for singular metrics with stronger regularity assumptions. Finally, as a positive result, we describe a $\mathrm{KO}$-theoretic condition which obstructs the existence of $\mathrm{L}^\infty$-metrics that are smooth and of psc outside a finite subset. This shows that closed enlargeable spin manifolds do not carry such metrics.
具有点奇异性的正标量曲率
我们证明了在每一个维度 $n \geq 8$中,存在一个光滑的封闭manifold $M^n$,它不包含光滑的正标量曲率("psc")度量,但是$M^n$包含一个$\mathrm{L}^\infty$度量,它是光滑的,并且在一个维度为$\geq 8$的奇异集合外有psc。这为舍恩的猜想提供了反例。事实上,有这样一些任意高维度的例子,它们只有单点奇点。此外,我们还提供了$n \geq 8$的$\mathrm{L}^\infty$-metrics的例子,它们是光滑的,在原点外有psc,但不能被非负标量曲率的无处不在的光滑黎曼度量平滑地近似到远离原点的地方。这与通过里奇-德图尔克流(Ricci-DeTurck flow)对具有更强正则性假设的奇异度量的平滑结果形成了鲜明对比。最后,作为一个积极的结果,我们描述了一个$\mathrm{KO}$理论条件,它阻碍了在有限子集外光滑且具有psc的$\mathrm{L}^\infty$度量的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信