An analogue of Turaev comultiplication for knots in non-orientable thickening of a non-orientable surface

Vladimir Tarkaev
{"title":"An analogue of Turaev comultiplication for knots in non-orientable thickening of a non-orientable surface","authors":"Vladimir Tarkaev","doi":"arxiv-2407.20715","DOIUrl":null,"url":null,"abstract":"This paper concerns pseudo-classical knots in the non-orientable manifold\n$\\hat{\\Sigma} =\\Sigma \\times [0,1]$, where $\\Sigma$ is a non-orientable surface\nand a knot $K \\subset \\hat{\\Sigma}$ is called pseudo-classical if $K$ is\norientation-preserving path in $\\hat{\\Sigma}$. For this kind of knot we\nintroduce an invariant $\\Delta$ that is an analogue of Turaev comultiplication\nfor knots in a thickened orientable surface. As its classical prototype,\n$\\Delta$ takes value in a polynomial algebra generated by homotopy classes of\nnon-contractible loops on $\\Sigma$, however, as a ground ring we use some\nsubring of $\\mathbb{C}$ instead of $\\mathbb{Z}$. Then we define a few homotopy,\nhomology and polynomial invariants, which are consequences of $\\Delta$,\nincluding an analogue of the affine index polynomial.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"197 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns pseudo-classical knots in the non-orientable manifold $\hat{\Sigma} =\Sigma \times [0,1]$, where $\Sigma$ is a non-orientable surface and a knot $K \subset \hat{\Sigma}$ is called pseudo-classical if $K$ is orientation-preserving path in $\hat{\Sigma}$. For this kind of knot we introduce an invariant $\Delta$ that is an analogue of Turaev comultiplication for knots in a thickened orientable surface. As its classical prototype, $\Delta$ takes value in a polynomial algebra generated by homotopy classes of non-contractible loops on $\Sigma$, however, as a ground ring we use some subring of $\mathbb{C}$ instead of $\mathbb{Z}$. Then we define a few homotopy, homology and polynomial invariants, which are consequences of $\Delta$, including an analogue of the affine index polynomial.
图拉耶夫乘法在不可定向曲面的不可定向增厚中的结的类似物
本文涉及不可定向流形$\hat{Sigma} =\Sigma \times [0,1]$中的伪经典结,其中$\Sigma$是一个不可定向曲面,如果$K$是$\hat{Sigma}$中的保定向路径,那么一个结$K \子集 \hat{Sigma}$就被称为伪经典结。对于这种结,我们引入了一个不变量 $\Delta$ ,它是图拉耶夫乘法在加厚可定向曲面中的结的类似物。作为它的经典原型,$\Delta$ 在一个多项式代数中取值,这个多项式代数是由\Sigma$上的非收缩环的同调类生成的,然而,作为一个基环,我们使用了$\mathbb{C}$的某个子环,而不是$\mathbb{Z}$。然后,我们定义了一些同调、同构和多项式不变式,它们是 $\Delta$ 的后果,包括仿射指数多项式的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信