Explainable and interpretable machine learning and data mining

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Martin Atzmueller, Johannes Fürnkranz, Tomáš Kliegr, Ute Schmid
{"title":"Explainable and interpretable machine learning and data mining","authors":"Martin Atzmueller, Johannes Fürnkranz, Tomáš Kliegr, Ute Schmid","doi":"10.1007/s10618-024-01041-y","DOIUrl":null,"url":null,"abstract":"<p>The growing number of applications of machine learning and data mining in many domains—from agriculture to business, education, industrial manufacturing, and medicine—gave rise to new requirements for how to inspect and control the learned models. The research domain of explainable artificial intelligence (XAI) has been newly established with a strong focus on methods being applied post-hoc on black-box models. As an alternative, the use of interpretable machine learning methods has been considered—where the learned models are white-box ones. Black-box models can be characterized as representing implicit knowledge—typically resulting from statistical and neural approaches of machine learning, while white-box models are explicit representations of knowledge—typically resulting from rule-learning approaches. In this introduction to the special issue on ‘Explainable and Interpretable Machine Learning and Data Mining’ we propose to bring together both perspectives, pointing out commonalities and discussing possibilities to integrate them.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"44 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01041-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The growing number of applications of machine learning and data mining in many domains—from agriculture to business, education, industrial manufacturing, and medicine—gave rise to new requirements for how to inspect and control the learned models. The research domain of explainable artificial intelligence (XAI) has been newly established with a strong focus on methods being applied post-hoc on black-box models. As an alternative, the use of interpretable machine learning methods has been considered—where the learned models are white-box ones. Black-box models can be characterized as representing implicit knowledge—typically resulting from statistical and neural approaches of machine learning, while white-box models are explicit representations of knowledge—typically resulting from rule-learning approaches. In this introduction to the special issue on ‘Explainable and Interpretable Machine Learning and Data Mining’ we propose to bring together both perspectives, pointing out commonalities and discussing possibilities to integrate them.

Abstract Image

可解释和可说明的机器学习和数据挖掘
机器学习和数据挖掘在农业、商业、教育、工业制造和医疗等众多领域的应用日益增多,这就对如何检查和控制所学模型提出了新的要求。可解释人工智能(XAI)的研究领域刚刚建立,重点关注在黑盒模型上事后应用的方法。作为一种替代方法,人们考虑使用可解释的机器学习方法--学习到的模型是白盒模型。黑箱模型的特点是代表隐性知识--通常产生于机器学习的统计和神经方法,而白箱模型则是知识的显性代表--通常产生于规则学习方法。在这篇 "可解释和可解释的机器学习与数据挖掘 "特刊导言中,我们建议将这两种观点结合起来,指出它们的共同点,并讨论将它们整合的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信