Computational symplectic topology and symmetric orbits in the restricted three-body problem

Chankyu Joung, Otto van Koert
{"title":"Computational symplectic topology and symmetric orbits in the restricted three-body problem","authors":"Chankyu Joung, Otto van Koert","doi":"arxiv-2407.19159","DOIUrl":null,"url":null,"abstract":"In this paper we propose a computational approach to proving the Birkhoff\nconjecture on the restricted three-body problem, which asserts the existence of\na disk-like global surface of section. Birkhoff had conjectured this surface of\nsection as a tool to prove existence of a direct periodic orbit. Using\ntechniques from validated numerics we prove the existence of an approximately\ncircular direct orbit for a wide range of mass parameters and Jacobi energies.\nWe also provide methods to rigorously compute the Conley-Zehnder index of\nperiodic Hamiltonian orbits using computational tools, thus giving some initial\nsteps for developing computational Floer homology and providing the means to\nprove the Birkhoff conjecture via symplectic topology. We apply this method to\nvarious symmetric orbits in the restricted three-body problem.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we propose a computational approach to proving the Birkhoff conjecture on the restricted three-body problem, which asserts the existence of a disk-like global surface of section. Birkhoff had conjectured this surface of section as a tool to prove existence of a direct periodic orbit. Using techniques from validated numerics we prove the existence of an approximately circular direct orbit for a wide range of mass parameters and Jacobi energies. We also provide methods to rigorously compute the Conley-Zehnder index of periodic Hamiltonian orbits using computational tools, thus giving some initial steps for developing computational Floer homology and providing the means to prove the Birkhoff conjecture via symplectic topology. We apply this method to various symmetric orbits in the restricted three-body problem.
受限三体问题中的计算交映拓扑和对称轨道
在本文中,我们提出了一种计算方法来证明关于受限三体问题的伯克霍夫猜想(Birkhoffconjecture),该猜想断言存在一个圆盘状的全局截面。伯克霍夫曾猜想过这个截面,并以此为工具证明了直接周期轨道的存在性。我们还提供了使用计算工具严格计算周期性哈密顿轨道的康利-泽恩德指数的方法,从而为发展计算弗洛尔同调提供了一些初始步骤,并提供了通过交映拓扑学证明伯克霍夫猜想的方法。我们将这种方法应用于受限三体问题中的各种对称轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信