Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information

Pascal François, Geneviève Gauthier, Frédéric Godin, Carlos Octavio Pérez Mendoza
{"title":"Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information","authors":"Pascal François, Geneviève Gauthier, Frédéric Godin, Carlos Octavio Pérez Mendoza","doi":"arxiv-2407.21138","DOIUrl":null,"url":null,"abstract":"We present a dynamic hedging scheme for S&P 500 options, where rebalancing\ndecisions are enhanced by integrating information about the implied volatility\nsurface dynamics. The optimal hedging strategy is obtained through a deep\npolicy gradient-type reinforcement learning algorithm, with a novel hybrid\nneural network architecture improving the training performance. The favorable\ninclusion of forward-looking information embedded in the volatility surface\nallows our procedure to outperform several conventional benchmarks such as\npractitioner and smiled-implied delta hedging procedures, both in simulation\nand backtesting experiments.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a dynamic hedging scheme for S&P 500 options, where rebalancing decisions are enhanced by integrating information about the implied volatility surface dynamics. The optimal hedging strategy is obtained through a deep policy gradient-type reinforcement learning algorithm, with a novel hybrid neural network architecture improving the training performance. The favorable inclusion of forward-looking information embedded in the volatility surface allows our procedure to outperform several conventional benchmarks such as practitioner and smiled-implied delta hedging procedures, both in simulation and backtesting experiments.
利用隐含波动率表面反馈信息加强期权深度套期保值
我们提出了一种针对标准普尔 500 指数期权的动态对冲方案,通过整合隐含波动率表面动态信息来增强再平衡决策。最优对冲策略是通过一种梯度强化学习算法获得的,新颖的混合神经网络架构提高了训练效果。由于将前瞻性信息嵌入波动率表面,我们的程序在模拟和回溯测试实验中的表现都优于几种传统基准,如ractractitioner和smiled-implied delta对冲程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信