Predicting quantum materials properties using novel faithful machine learning embeddings

Gavin Nop, Micah Mundy, Durga Paudyal, Jonathan Smith
{"title":"Predicting quantum materials properties using novel faithful machine learning embeddings","authors":"Gavin Nop, Micah Mundy, Durga Paudyal, Jonathan Smith","doi":"arxiv-2407.18388","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) is accelerating the progress of materials prediction\nand classification, with particular success in CGNN designs. While classical ML\nmethods remain accessible, advanced deep networks are still challenging to\nbuild and train. We introduce two new adaptations and refine two existing ML\nnetworks for generic crystalline quantum materials properties prediction and\noptimization. These new models achieve state-of-the-art performance in\npredicting TQC classification and strong performance in predicting band gaps,\nmagnetic classifications, formation energies, and symmetry group. All networks\neasily generalize to all quantum crystalline materials property predictions. To\nsupport this, full implementations and automated methods for data handling and\nmaterials predictions are provided, facilitating the use of deep ML methods in\nquantum materials science. Finally, dataset error rates are analyzed using an\nensemble model to identify and highlight highly atypical materials for further\ninvestigations.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning (ML) is accelerating the progress of materials prediction and classification, with particular success in CGNN designs. While classical ML methods remain accessible, advanced deep networks are still challenging to build and train. We introduce two new adaptations and refine two existing ML networks for generic crystalline quantum materials properties prediction and optimization. These new models achieve state-of-the-art performance in predicting TQC classification and strong performance in predicting band gaps, magnetic classifications, formation energies, and symmetry group. All networks easily generalize to all quantum crystalline materials property predictions. To support this, full implementations and automated methods for data handling and materials predictions are provided, facilitating the use of deep ML methods in quantum materials science. Finally, dataset error rates are analyzed using an ensemble model to identify and highlight highly atypical materials for further investigations.
利用新型忠实机器学习嵌入预测量子材料特性
机器学习(ML)正在加速材料预测和分类的发展,其中 CGNN 设计尤为成功。虽然经典的 ML 方法仍然可以使用,但高级深度网络的构建和训练仍然具有挑战性。我们为通用晶体量子材料性能预测和优化引入了两个新的适应性模型,并改进了两个现有的 ML 网络。这些新模型在预测 TQC 分类方面达到了最先进的性能,在预测带隙、磁性分类、形成能和对称组方面表现出色。所有网络都能轻松地通用于所有量子晶体材料的属性预测。为了支持这一点,我们提供了数据处理和材料预测的完整实现和自动化方法,从而促进了深度 ML 方法在量子材料科学中的应用。最后,使用集合模型分析了数据集错误率,以识别并突出高度非典型材料,供进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信