Analysis of Fork-Join Scheduling on Heterogeneous Parallel Servers

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Moonmoon Mohanty;Gaurav Gautam;Vaneet Aggarwal;Parimal Parag
{"title":"Analysis of Fork-Join Scheduling on Heterogeneous Parallel Servers","authors":"Moonmoon Mohanty;Gaurav Gautam;Vaneet Aggarwal;Parimal Parag","doi":"10.1109/TNET.2024.3432183","DOIUrl":null,"url":null,"abstract":"This paper investigates the \n<inline-formula> <tex-math>$(k,k)$ </tex-math></inline-formula>\n fork-join scheduling scheme on a system of n parallel servers comprising both slow and fast servers. Tasks arriving in the system are divided into k sub-tasks and assigned to a random set of k servers, where each task can be assigned independently to a distinct slow or fast server with selection probability \n<inline-formula> <tex-math>$p_{s}$ </tex-math></inline-formula>\n or \n<inline-formula> <tex-math>$1-p_{s}$ </tex-math></inline-formula>\n, respectively. Our analysis demonstrates that the joint distribution of the stationary workload across any set of k queues becomes asymptotically independent as the number of servers n grows, with k scaling as \n<inline-formula> <tex-math>$o\\left ({{n^{\\frac {1}{4}}}}\\right)$ </tex-math></inline-formula>\n. Under asymptotic independence, the limiting mean task completion time can be expressed as an integral. However, it is analytically challenging to compute the optimal selection probability \n<inline-formula> <tex-math>$p_{s}^{\\ast } $ </tex-math></inline-formula>\n that minimizes this integral. To address this, we provide an upper bound on the limiting mean task completion time and identify the selection probability \n<inline-formula> <tex-math>$\\hat {p}_{s}$ </tex-math></inline-formula>\n that minimizes this bound. We validate that this selection probability \n<inline-formula> <tex-math>$\\hat {p}_{s}$ </tex-math></inline-formula>\n yields a near-optimal performance through numerical experiments.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4798-4809"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10614122/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the $(k,k)$ fork-join scheduling scheme on a system of n parallel servers comprising both slow and fast servers. Tasks arriving in the system are divided into k sub-tasks and assigned to a random set of k servers, where each task can be assigned independently to a distinct slow or fast server with selection probability $p_{s}$ or $1-p_{s}$ , respectively. Our analysis demonstrates that the joint distribution of the stationary workload across any set of k queues becomes asymptotically independent as the number of servers n grows, with k scaling as $o\left ({{n^{\frac {1}{4}}}}\right)$ . Under asymptotic independence, the limiting mean task completion time can be expressed as an integral. However, it is analytically challenging to compute the optimal selection probability $p_{s}^{\ast } $ that minimizes this integral. To address this, we provide an upper bound on the limiting mean task completion time and identify the selection probability $\hat {p}_{s}$ that minimizes this bound. We validate that this selection probability $\hat {p}_{s}$ yields a near-optimal performance through numerical experiments.
异构并行服务器上的叉接调度分析
本文研究了一个由n个并行服务器组成的系统上的$(k,k)$ fork-join调度方案。到达系统的任务被分成k个子任务,并随机分配给k个服务器,其中每个任务可以独立分配给不同的慢速或快速服务器,选择概率分别为$p_{s}$或$1-p_{s}$。我们的分析表明,随着服务器数量n的增长,任意一组k队列上的固定工作负载的联合分布变得渐近独立,其中k缩放为$o\left ({{n^{\frac {1}{4}}}}\right)$。在渐近无关的情况下,极限平均任务完成时间可以表示为一个积分。然而,从分析的角度来看,计算最小化这个积分的最优选择概率$p_{s}^{\ast } $是一项挑战。为了解决这个问题,我们提供了限制平均任务完成时间的上界,并确定了最小化该上界的选择概率$\hat {p}_{s}$。我们通过数值实验验证了这种选择概率$\hat {p}_{s}$产生了接近最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信