Invariants of Systems Having a Small Number of Degrees of Freedom with Dissipation

IF 0.2 Q4 MATHEMATICS
M. V. Shamolin
{"title":"Invariants of Systems Having a Small Number of Degrees of Freedom with Dissipation","authors":"M. V. Shamolin","doi":"10.3103/s0027132224700116","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Tensor invariants (differential forms) for homogeneous dynamical systems on tangent bundles to smooth two-dimensional manifolds are presented in the paper. The connection between the presence of these invariants and the full set of first integrals necessary for integration of geodesic, potential, and dissipative systems is shown. At the same time, the introduced force fields make the considered systems dissipative with dissipation of different signs and generalize the previously considered ones. We represent the typical examples from rigid body dynamics.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132224700116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor invariants (differential forms) for homogeneous dynamical systems on tangent bundles to smooth two-dimensional manifolds are presented in the paper. The connection between the presence of these invariants and the full set of first integrals necessary for integration of geodesic, potential, and dissipative systems is shown. At the same time, the introduced force fields make the considered systems dissipative with dissipation of different signs and generalize the previously considered ones. We represent the typical examples from rigid body dynamics.

Abstract Image

带有耗散的少量自由度系统的不变式
摘要 本文提出了光滑二维流形切线束上的均相动力系统的张量不变量(微分形式)。文中指出了这些不变量的存在与测地、势和耗散系统集成所需的全套第一积分之间的联系。同时,引入的力场使得所考虑的系统具有不同符号的耗散,并对之前考虑的系统进行了扩展。我们用刚体动力学中的典型例子来说明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信