{"title":"Towards a gapless 1 km fractional snow cover via a data fusion framework","authors":"","doi":"10.1016/j.isprsjprs.2024.07.018","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate quantification of snow cover facilitates the prediction of snowmelt runoff, the assessment of freshwater availability, and the analysis of Earth’s energy balance. Existing fractional snow cover (FSC) data, however, often suffer from limitations such as spatial and temporal gaps, compromised accuracy, and coarse spatial resolution. These limitations significantly hinder the ability to monitor snow cover dynamics effectively. To address these formidable challenges, this study introduces a novel data fusion framework specifically designed to generate high-resolution (1 km) daily FSC estimation across vast regions like North America, regardless of weather conditions. It achieved this by effectively integrating the complementary spatiotemporal characteristics of both coarse- and fine-resolution FSC data through a multi-stage processing pipeline. This pipeline incorporates innovative strategies for bias correction, gap filling, and consideration of dynamic characteristics of snow cover, ultimately leading to high accuracy and high spatiotemporal completeness in the fused FSC data. The accuracy of the fused FSC data was thoroughly evaluated over the study period (September 2015 to May 2016), demonstrating excellent consistency with independent datasets, including Landsat-derived FSC (total 24 scenes; RMSE=6.8–18.9 %) and ground-based snow observations (14,350 stations). Notably, the fused data outperforms the widely used Interactive Multi-sensor Snow and Ice Mapping System (IMS) daily snow cover extent data in overall accuracy (0.92 vs. 0.91), F1_score (0.86 vs. 0.83), and Kappa coefficient (0.80 vs. 0.77). Furthermore, the fused FSC data exhibits superior performance in accurately capturing the intricate daily snow cover dynamics compared to IMS data, as confirmed by superior agreement with ground-based observations in four snow-cover phenology metrics. In conclusion, the proposed data fusion framework offers a significant advancement in snow cover monitoring by generating high-accuracy, spatiotemporally complete daily FSC maps that effectively capture the spatial and temporal variability of snow cover. These FSC datasets hold substantial value for climate projections, hydrological studies, and water management at both global and regional scales.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924271624002855/pdfft?md5=ea8b57387941493889d557dc49bb45cd&pid=1-s2.0-S0924271624002855-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624002855","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate quantification of snow cover facilitates the prediction of snowmelt runoff, the assessment of freshwater availability, and the analysis of Earth’s energy balance. Existing fractional snow cover (FSC) data, however, often suffer from limitations such as spatial and temporal gaps, compromised accuracy, and coarse spatial resolution. These limitations significantly hinder the ability to monitor snow cover dynamics effectively. To address these formidable challenges, this study introduces a novel data fusion framework specifically designed to generate high-resolution (1 km) daily FSC estimation across vast regions like North America, regardless of weather conditions. It achieved this by effectively integrating the complementary spatiotemporal characteristics of both coarse- and fine-resolution FSC data through a multi-stage processing pipeline. This pipeline incorporates innovative strategies for bias correction, gap filling, and consideration of dynamic characteristics of snow cover, ultimately leading to high accuracy and high spatiotemporal completeness in the fused FSC data. The accuracy of the fused FSC data was thoroughly evaluated over the study period (September 2015 to May 2016), demonstrating excellent consistency with independent datasets, including Landsat-derived FSC (total 24 scenes; RMSE=6.8–18.9 %) and ground-based snow observations (14,350 stations). Notably, the fused data outperforms the widely used Interactive Multi-sensor Snow and Ice Mapping System (IMS) daily snow cover extent data in overall accuracy (0.92 vs. 0.91), F1_score (0.86 vs. 0.83), and Kappa coefficient (0.80 vs. 0.77). Furthermore, the fused FSC data exhibits superior performance in accurately capturing the intricate daily snow cover dynamics compared to IMS data, as confirmed by superior agreement with ground-based observations in four snow-cover phenology metrics. In conclusion, the proposed data fusion framework offers a significant advancement in snow cover monitoring by generating high-accuracy, spatiotemporally complete daily FSC maps that effectively capture the spatial and temporal variability of snow cover. These FSC datasets hold substantial value for climate projections, hydrological studies, and water management at both global and regional scales.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.