Zhuo Huang, Muyang Li, Li Shen, Jun Yu, Chen Gong, Bo Han, Tongliang Liu
{"title":"Winning Prize Comes from Losing Tickets: Improve Invariant Learning by Exploring Variant Parameters for Out-of-Distribution Generalization","authors":"Zhuo Huang, Muyang Li, Li Shen, Jun Yu, Chen Gong, Bo Han, Tongliang Liu","doi":"10.1007/s11263-024-02075-x","DOIUrl":null,"url":null,"abstract":"<p>Out-of-Distribution (OOD) Generalization aims to learn robust models that generalize well to various environments without fitting to distribution-specific features. Recent studies based on Lottery Ticket Hypothesis (LTH) address this problem by minimizing the learning target to find some of the parameters that are critical to the task. However, in open-world visual recognition problems, such solutions are suboptimal as the learning task contains severe distribution noises, which can mislead the optimization process. Therefore, apart from finding the task-related parameters (i.e., invariant parameters), we propose <b>Exploring Variant parameters for Invariant Learning (EVIL)</b> which also leverages the distribution knowledge to find the parameters that are sensitive to distribution shift (i.e., variant parameters). Once the variant parameters are left out of invariant learning, a robust subnetwork that is resistant to distribution shift can be found. Additionally, the parameters that are relatively stable across distributions can be considered invariant ones to improve invariant learning. By fully exploring both variant and invariant parameters, our EVIL can effectively identify a robust subnetwork to improve OOD generalization. In extensive experiments on integrated testbed: DomainBed, EVIL can effectively and efficiently enhance many popular methods, such as ERM, IRM, SAM, etc. Our code is available at https://github.com/tmllab/EVIL.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"44 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02075-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Out-of-Distribution (OOD) Generalization aims to learn robust models that generalize well to various environments without fitting to distribution-specific features. Recent studies based on Lottery Ticket Hypothesis (LTH) address this problem by minimizing the learning target to find some of the parameters that are critical to the task. However, in open-world visual recognition problems, such solutions are suboptimal as the learning task contains severe distribution noises, which can mislead the optimization process. Therefore, apart from finding the task-related parameters (i.e., invariant parameters), we propose Exploring Variant parameters for Invariant Learning (EVIL) which also leverages the distribution knowledge to find the parameters that are sensitive to distribution shift (i.e., variant parameters). Once the variant parameters are left out of invariant learning, a robust subnetwork that is resistant to distribution shift can be found. Additionally, the parameters that are relatively stable across distributions can be considered invariant ones to improve invariant learning. By fully exploring both variant and invariant parameters, our EVIL can effectively identify a robust subnetwork to improve OOD generalization. In extensive experiments on integrated testbed: DomainBed, EVIL can effectively and efficiently enhance many popular methods, such as ERM, IRM, SAM, etc. Our code is available at https://github.com/tmllab/EVIL.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.