{"title":"Compressed Event Sensing (CES) Volumes for Event Cameras","authors":"Songnan Lin, Ye Ma, Jing Chen, Bihan Wen","doi":"10.1007/s11263-024-02197-2","DOIUrl":null,"url":null,"abstract":"<p>Deep learning has made significant progress in event-driven applications. But to match standard vision networks, most approaches rely on aggregating events into grid-like representations, which obscure crucial temporal information and limit overall performance. To address this issue, we propose a novel event representation called compressed event sensing (CES) volumes. CES volumes preserve the high temporal resolution of event streams by leveraging the sparsity property of events and the principles of compressed sensing theory. They effectively capture the frequency characteristics of events in low-dimensional representations, which can be accurately decoded to raw high-dimensional event signals. In addition, our theoretical analysis show that, when integrated with a neural network, CES volumes demonstrates greater expressive power under the neural tangent kernel approximation. Through synthetic phantom validation on dense frame regression and two downstream applications involving intensity-image reconstruction and object recognition tasks, we demonstrate the superior performance of CES volumes compared to state-of-the-art event representations.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"29 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02197-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has made significant progress in event-driven applications. But to match standard vision networks, most approaches rely on aggregating events into grid-like representations, which obscure crucial temporal information and limit overall performance. To address this issue, we propose a novel event representation called compressed event sensing (CES) volumes. CES volumes preserve the high temporal resolution of event streams by leveraging the sparsity property of events and the principles of compressed sensing theory. They effectively capture the frequency characteristics of events in low-dimensional representations, which can be accurately decoded to raw high-dimensional event signals. In addition, our theoretical analysis show that, when integrated with a neural network, CES volumes demonstrates greater expressive power under the neural tangent kernel approximation. Through synthetic phantom validation on dense frame regression and two downstream applications involving intensity-image reconstruction and object recognition tasks, we demonstrate the superior performance of CES volumes compared to state-of-the-art event representations.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.