survivalContour: visualizing predicted survival via colored contour plots.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-07-25 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae105
Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson
{"title":"survivalContour: visualizing predicted survival via colored contour plots.","authors":"Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson","doi":"10.1093/bioadv/vbae105","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.</p><p><strong>Availability and implementation: </strong>We provide a Shiny app at https://biostatistics.mdanderson.org/shinyapps/survivalContour/ and an R package available at https://github.com/YushuShi/survivalContour as implementations of this tool.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.

Availability and implementation: We provide a Shiny app at https://biostatistics.mdanderson.org/shinyapps/survivalContour/ and an R package available at https://github.com/YushuShi/survivalContour as implementations of this tool.

survivalContour:通过彩色等高线图直观显示预测存活率。
摘要:生存分析技术的进步为数据建模带来了前所未有的灵活性,但目前仍缺乏说明连续协变量对预测生存结果影响的工具。我们建议使用彩色等值线图来描述随时间变化的预测生存概率。我们的方法能够支持传统模型,包括 Cox 和 Fine-Gray 模型。然而,当与随机生存森林和深度神经网络等前沿机器学习模型结合使用时,我们的方法将大放异彩:我们在 https://biostatistics.mdanderson.org/shinyapps/survivalContour/ 上提供了一个 Shiny 应用程序,并在 https://github.com/YushuShi/survivalContour 上提供了一个 R 软件包作为该工具的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信