Florence Rivals, Sylvain Goutelle, Cyrielle Codde, Romain Garreau, Laure Ponthier, Pierre Marquet, Tristan Ferry, Marc Labriffe, Alexandre Destere, Jean-Baptiste Woillard
{"title":"A Machine Learning Algorithm to Predict the Starting Dose of Daptomycin.","authors":"Florence Rivals, Sylvain Goutelle, Cyrielle Codde, Romain Garreau, Laure Ponthier, Pierre Marquet, Tristan Ferry, Marc Labriffe, Alexandre Destere, Jean-Baptiste Woillard","doi":"10.1007/s40262-024-01405-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>The dosage of daptomycin is usually based on body weight. However, it has been shown that this approach yields too high an exposure in obese patients. Pharmacokinetic and pharmacodynamic indexes (PK/PD) have been proposed for daptomycin's antibacterial effect (AUC/CMI >666) and toxicity (C0 > 24.3 mg/L). We previously developed machine learning (ML) algorithms to predict starting doses based on Monte Carlo simulations. We propose a new way to perform probability of target attainment based on an ML algorithm to predict the daptomycin starting dose.</p><p><strong>Methods: </strong>The Dvorchik model of daptomycin was implemented in the mrgsolve R package and 4950 pharmacokinetic profiles were simulated with doses ranging from 4 to 12 mg/kg. We trained and benchmarked four machine learning algorithms and selected the best to iteratively search for the optimal dose of daptomycin maximizing the event (AUC/CMI > 666 and C0 < 24.3 mg/L). The ML algorithm was evaluated in simulations and an external database of real patients in comparison with population pharmacokinetics.</p><p><strong>Results: </strong>The performance of the Xgboost algorithms developed to predict the event (ROC AUC) in the training and test set were 0.762 and 0.761, respectively. The most important prediction variables were dose, creatinine clearance, body weight and sex. In the external database of real patients, the starting dose administered based on the ML algorithm significantly improved the target attainment by 7.9% (p-value = 0.02929) in comparison with the dose administered based on body weight.</p><p><strong>Conclusion: </strong>The developed algorithm improved the target attainment for daptomycin in comparison with weight-based dosing. We built a Shiny app to calculate the optimal starting dose.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40262-024-01405-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective: The dosage of daptomycin is usually based on body weight. However, it has been shown that this approach yields too high an exposure in obese patients. Pharmacokinetic and pharmacodynamic indexes (PK/PD) have been proposed for daptomycin's antibacterial effect (AUC/CMI >666) and toxicity (C0 > 24.3 mg/L). We previously developed machine learning (ML) algorithms to predict starting doses based on Monte Carlo simulations. We propose a new way to perform probability of target attainment based on an ML algorithm to predict the daptomycin starting dose.
Methods: The Dvorchik model of daptomycin was implemented in the mrgsolve R package and 4950 pharmacokinetic profiles were simulated with doses ranging from 4 to 12 mg/kg. We trained and benchmarked four machine learning algorithms and selected the best to iteratively search for the optimal dose of daptomycin maximizing the event (AUC/CMI > 666 and C0 < 24.3 mg/L). The ML algorithm was evaluated in simulations and an external database of real patients in comparison with population pharmacokinetics.
Results: The performance of the Xgboost algorithms developed to predict the event (ROC AUC) in the training and test set were 0.762 and 0.761, respectively. The most important prediction variables were dose, creatinine clearance, body weight and sex. In the external database of real patients, the starting dose administered based on the ML algorithm significantly improved the target attainment by 7.9% (p-value = 0.02929) in comparison with the dose administered based on body weight.
Conclusion: The developed algorithm improved the target attainment for daptomycin in comparison with weight-based dosing. We built a Shiny app to calculate the optimal starting dose.
期刊介绍:
Clinical Pharmacokinetics promotes the continuing development of clinical pharmacokinetics and pharmacodynamics for the improvement of drug therapy, and for furthering postgraduate education in clinical pharmacology and therapeutics.
Pharmacokinetics, the study of drug disposition in the body, is an integral part of drug development and rational use. Knowledge and application of pharmacokinetic principles leads to accelerated drug development, cost effective drug use and a reduced frequency of adverse effects and drug interactions.