{"title":"Assembly of Selenadiazine Scaffolds via Rh(III)-Catalyzed Amidine-Directed Cascade C-H Selenylation/[5 + 1] Annulation with Elemental Selenium.","authors":"Yuyan Wan, Chensi Li, Zhensheng Lin, Xinyue Lin, Hui Gao, Wei Yi, Zhi Zhou","doi":"10.1021/acs.orglett.4c02262","DOIUrl":null,"url":null,"abstract":"<p><p>By employing elemental selenium as the selenium source, we have realized the amidine-directed Rh(III)-catalyzed cascade C-H selenylation/[5 + 1] annulation for the direct construction of structurally novel selenadiazine, benzoselenadiazine, and benzoselenazol-3-amine frameworks with specific site selectivity and good functional group tolerance. Besides, the obtained products can serve as fundamental platforms for subsequent chemical transformations, and thus, the feasible SeNEx reaction, SeNEx/Michael addition, and simple conversion of the selenadiazine product into diverse other organoselenium molecules were demonstrated accordingly. Taken together, the developed methodology efficiently expands the chemical space of organoselenium species.</p>","PeriodicalId":54,"journal":{"name":"Organic Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.orglett.4c02262","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
By employing elemental selenium as the selenium source, we have realized the amidine-directed Rh(III)-catalyzed cascade C-H selenylation/[5 + 1] annulation for the direct construction of structurally novel selenadiazine, benzoselenadiazine, and benzoselenazol-3-amine frameworks with specific site selectivity and good functional group tolerance. Besides, the obtained products can serve as fundamental platforms for subsequent chemical transformations, and thus, the feasible SeNEx reaction, SeNEx/Michael addition, and simple conversion of the selenadiazine product into diverse other organoselenium molecules were demonstrated accordingly. Taken together, the developed methodology efficiently expands the chemical space of organoselenium species.
期刊介绍:
Organic Letters invites original reports of fundamental research in all branches of the theory and practice of organic, physical organic, organometallic,medicinal, and bioorganic chemistry. Organic Letters provides rapid disclosure of the key elements of significant studies that are of interest to a large portion of the organic community. In selecting manuscripts for publication, the Editors place emphasis on the originality, quality and wide interest of the work. Authors should provide enough background information to place the new disclosure in context and to justify the rapid publication format. Back-to-back Letters will be considered. Full details should be reserved for an Article, which should appear in due course.