LiteBIRD science goals and forecasts: primordial magnetic fields

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
D. Paoletti, J.A. Rubino-Martin, M. Shiraishi, D. Molinari, J. Chluba, F. Finelli, C. Baccigalupi, J. Errard, A. Gruppuso, A.I. Lonappan, A. Tartari, E. Allys, A. Anand, J. Aumont, M. Ballardini, A.J. Banday, R.B. Barreiro, N. Bartolo, M. Bersanelli, M. Bortolami, T. Brinckmann, E. Calabrese, P. Campeti, A. Carones, F.J. Casas, K. Cheung, L. Clermont, F. Columbro, G. Conenna, A. Coppolecchia, F. Cuttaia, G. D'Alessandro, P. de Bernardis, S. Della Torre, P. Diego-Palazuelos, H.K. Eriksen, U. Fuskeland, G. Galloni, M. Galloway, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, C. Gimeno-Amo, E. Gjerløw, F. Grupp, M. Hazumi, S. Henrot-Versillé, L.T. Hergt, E. Hivon, K. Ichiki, H. Ishino, K. Kohri, E. Komatsu, N. Krachmalnicoff, L. Lamagna, M. Lattanzi, M. Lembo, F. Levrier, M. López-Caniego, G. Luzzi, E. Martínez-González, S. Masi, S. Matarrese, S. Micheli, M. Migliaccio, M. Monelli, L. Montier, G. Morgante, L. Mousset, R. Nagata, T. Namikawa, P. Natoli, A. Novelli, I. Obata, A...
{"title":"LiteBIRD science goals and forecasts: primordial magnetic fields","authors":"D. Paoletti, J.A. Rubino-Martin, M. Shiraishi, D. Molinari, J. Chluba, F. Finelli, C. Baccigalupi, J. Errard, A. Gruppuso, A.I. Lonappan, A. Tartari, E. Allys, A. Anand, J. Aumont, M. Ballardini, A.J. Banday, R.B. Barreiro, N. Bartolo, M. Bersanelli, M. Bortolami, T. Brinckmann, E. Calabrese, P. Campeti, A. Carones, F.J. Casas, K. Cheung, L. Clermont, F. Columbro, G. Conenna, A. Coppolecchia, F. Cuttaia, G. D'Alessandro, P. de Bernardis, S. Della Torre, P. Diego-Palazuelos, H.K. Eriksen, U. Fuskeland, G. Galloni, M. Galloway, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, C. Gimeno-Amo, E. Gjerløw, F. Grupp, M. Hazumi, S. Henrot-Versillé, L.T. Hergt, E. Hivon, K. Ichiki, H. Ishino, K. Kohri, E. Komatsu, N. Krachmalnicoff, L. Lamagna, M. Lattanzi, M. Lembo, F. Levrier, M. López-Caniego, G. Luzzi, E. Martínez-González, S. Masi, S. Matarrese, S. Micheli, M. Migliaccio, M. Monelli, L. Montier, G. Morgante, L. Mousset, R. Nagata, T. Namikawa, P. Natoli, A. Novelli, I. Obata, A...","doi":"10.1088/1475-7516/2024/07/086","DOIUrl":null,"url":null,"abstract":"We present detailed forecasts for the constraints on the characteristics of primordial magnetic fields (PMFs) generated prior to recombination that will be obtained with the LiteBIRD satellite. The constraints are driven by some of the main physical effects of PMFs on the CMB anisotropies: the gravitational effects of magnetically-induced perturbations; the effects on the thermal and ionization history of the Universe; the Faraday rotation imprint on the CMB polarization spectra; and the non-Gaussianities induced in polarization anisotropies. LiteBIRD represents a sensitive probe for PMFs. We explore different levels of complexity, for LiteBIRD data and PMF configurations, accounting for possible degeneracies with primordial gravitational waves from inflation. By exploiting all the physical effects, LiteBIRD will be able to improve the current limit on PMFs at intermediate and large scales coming from Planck. In particular, thanks to its accurate B-mode polarization measurement, LiteBIRD will improve the constraints on infrared configurations for the gravitational effect, giving BnB=-2.91 Mpc< 0.8 nG at 95% C.L., potentially opening the possibility to detect nanogauss fields with high significance. We also observe a significant improvement in the limits when marginalized over the spectral index, BnBmarg1 Mpc< 2.2 nG at 95 % C.L. From the thermal history effect, which relies mainly on E-mode polarization data, we obtain a significant improvement for all PMF configurations, with the marginalized case, √⟨B2⟩marg<0.50 nG at 95 % C.L. Faraday rotation constraints will take advantage of the wide frequency coverage of LiteBIRD and the high sensitivity in B modes, improving the limits by orders of magnitude with respect to current results, BnB=-2.91 Mpc < 3.2 nG at 95 % C.L. Finally, non-Gaussianities of the B-mode polarization can probe PMFs at the level of 1 nG, again significantly improving the current bounds from Planck. Altogether our forecasts represent a broad collection of complementary probes based on widely tested methodologies, providing conservative limits on PMF characteristics that will be achieved with the LiteBIRD satellite.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/07/086","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present detailed forecasts for the constraints on the characteristics of primordial magnetic fields (PMFs) generated prior to recombination that will be obtained with the LiteBIRD satellite. The constraints are driven by some of the main physical effects of PMFs on the CMB anisotropies: the gravitational effects of magnetically-induced perturbations; the effects on the thermal and ionization history of the Universe; the Faraday rotation imprint on the CMB polarization spectra; and the non-Gaussianities induced in polarization anisotropies. LiteBIRD represents a sensitive probe for PMFs. We explore different levels of complexity, for LiteBIRD data and PMF configurations, accounting for possible degeneracies with primordial gravitational waves from inflation. By exploiting all the physical effects, LiteBIRD will be able to improve the current limit on PMFs at intermediate and large scales coming from Planck. In particular, thanks to its accurate B-mode polarization measurement, LiteBIRD will improve the constraints on infrared configurations for the gravitational effect, giving BnB=-2.91 Mpc< 0.8 nG at 95% C.L., potentially opening the possibility to detect nanogauss fields with high significance. We also observe a significant improvement in the limits when marginalized over the spectral index, BnBmarg1 Mpc< 2.2 nG at 95 % C.L. From the thermal history effect, which relies mainly on E-mode polarization data, we obtain a significant improvement for all PMF configurations, with the marginalized case, √⟨B2⟩marg<0.50 nG at 95 % C.L. Faraday rotation constraints will take advantage of the wide frequency coverage of LiteBIRD and the high sensitivity in B modes, improving the limits by orders of magnitude with respect to current results, BnB=-2.91 Mpc < 3.2 nG at 95 % C.L. Finally, non-Gaussianities of the B-mode polarization can probe PMFs at the level of 1 nG, again significantly improving the current bounds from Planck. Altogether our forecasts represent a broad collection of complementary probes based on widely tested methodologies, providing conservative limits on PMF characteristics that will be achieved with the LiteBIRD satellite.
LiteBIRD 科学目标和预测:原始磁场
我们将详细预测 LiteBIRD 卫星对重组前产生的原始磁场(PMF)特性的约束。这些约束条件是由原始磁场对CMB各向异性的一些主要物理效应驱动的:磁诱发扰动的引力效应;对宇宙热和电离历史的影响;CMB偏振谱上的法拉第旋转印记;以及偏振各向异性中诱发的非高斯性。LiteBIRD 是 PMF 的灵敏探测器。我们探索了 LiteBIRD 数据和 PMF 配置的不同复杂程度,并考虑了与来自暴胀的原始引力波可能存在的退行性。通过利用所有物理效应,LiteBIRD 将能够改进目前普朗克对中大尺度 PMF 的限制。特别是,由于其精确的B模式偏振测量,LiteBIRD将改善引力效应对红外配置的约束,在95% C.L.时给出BnB=-2.91 Mpc< 0.8 nG,从而有可能探测到意义重大的纳米高斯场。热历史效应主要依赖于 E 模式偏振数据,我们发现所有 PMF 配置的极限都有明显改善,在 95% C.L. 的边际化情况下,√⟨B2⟩marg<0.50 nG。法拉第旋转约束将利用 LiteBIRD 的宽频率覆盖范围和 B 模式的高灵敏度,与目前的结果相比,极限提高了几个数量级:BnB=-2.91 Mpc < 3.2 nG(95% C.L.)。最后,B 模式偏振的非高斯性可以探测到 1 nG 水平的 PMF,再次显著提高了普朗克目前的极限。总之,我们的预测代表了基于广泛测试方法的一系列互补探测,为 LiteBIRD 卫星将实现的 PMF 特性提供了保守的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信