Neural Prompt Search.

Yuanhan Zhang, Kaiyang Zhou, Ziwei Liu
{"title":"Neural Prompt Search.","authors":"Yuanhan Zhang, Kaiyang Zhou, Ziwei Liu","doi":"10.1109/TPAMI.2024.3435939","DOIUrl":null,"url":null,"abstract":"<p><p>The size of vision models has grown exponentially over the last few years, especially after the emergence of Vision Transformer. This has motivated the development of parameter-efficient tuning methods, such as learning adapter layers or visual prompt tokens, which allow a tiny portion of model parameters to be trained whereas the vast majority obtained from pre-training are frozen. However, designing a proper tuning method is non-trivial: one might need to try out a lengthy list of design choices, not to mention that each downstream dataset often requires custom designs. In this paper, we view the existing parameter-efficient tuning methods as \"prompt modules\" and propose Neural prOmpt seArcH (NOAH), a novel approach that learns, for large vision models, the optimal design of prompt modules through a neural architecture search algorithm, specifically for each downstream dataset. By conducting extensive experiments on over 20 vision datasets, we demonstrate that NOAH (i) is superior to individual prompt modules, (ii) has good few-shot learning ability, and (iii) is domain-generalizable. The code and models are available at https://github.com/ZhangYuanhan-AI/NOAH.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3435939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The size of vision models has grown exponentially over the last few years, especially after the emergence of Vision Transformer. This has motivated the development of parameter-efficient tuning methods, such as learning adapter layers or visual prompt tokens, which allow a tiny portion of model parameters to be trained whereas the vast majority obtained from pre-training are frozen. However, designing a proper tuning method is non-trivial: one might need to try out a lengthy list of design choices, not to mention that each downstream dataset often requires custom designs. In this paper, we view the existing parameter-efficient tuning methods as "prompt modules" and propose Neural prOmpt seArcH (NOAH), a novel approach that learns, for large vision models, the optimal design of prompt modules through a neural architecture search algorithm, specifically for each downstream dataset. By conducting extensive experiments on over 20 vision datasets, we demonstrate that NOAH (i) is superior to individual prompt modules, (ii) has good few-shot learning ability, and (iii) is domain-generalizable. The code and models are available at https://github.com/ZhangYuanhan-AI/NOAH.

神经提示搜索
在过去几年中,视觉模型的规模呈指数级增长,尤其是在视觉转换器(Vision Transformer)出现之后。这推动了参数效率调整方法的发展,例如学习适配器层或视觉提示标记,这些方法允许对极小部分模型参数进行训练,而通过预训练获得的绝大部分参数则被冻结。然而,设计一种合适的调整方法并非易事:我们可能需要尝试一长串的设计选择,更不用说每个下游数据集通常都需要定制设计。在本文中,我们将现有的参数高效调整方法视为 "提示模块",并提出了神经提示模块(NOAH),这是一种新颖的方法,通过神经架构搜索算法学习大型视觉模型的最佳提示模块设计,特别适用于每个下游数据集。通过在 20 多个视觉数据集上进行广泛实验,我们证明了 NOAH (i) 优于单个提示模块,(ii) 具有良好的少量学习能力,(iii) 具有领域通用性。代码和模型可在 https://github.com/ZhangYuanhan-AI/NOAH 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信