Segmentation and Vascular Vectorization for Coronary Artery by Geometry-based Cascaded Neural Network.

Xiaoyu Yang, Lijian Xu, Simon Yu, Qing Xia, Hongsheng Li, Shaoting Zhang
{"title":"Segmentation and Vascular Vectorization for Coronary Artery by Geometry-based Cascaded Neural Network.","authors":"Xiaoyu Yang, Lijian Xu, Simon Yu, Qing Xia, Hongsheng Li, Shaoting Zhang","doi":"10.1109/TMI.2024.3435714","DOIUrl":null,"url":null,"abstract":"<p><p>Segmentation of the coronary artery is an important task for the quantitative analysis of coronary computed tomography angiography (CCTA) images and is being stimulated by the field of deep learning. However, the complex structures with tiny and narrow branches of the coronary artery bring it a great challenge. Coupled with the medical image limitations of low resolution and poor contrast, fragmentations of segmented vessels frequently occur in the prediction. Therefore, a geometry-based cascaded segmentation method is proposed for the coronary artery, which has the following innovations: 1) Integrating geometric deformation networks, we design a cascaded network for segmenting the coronary artery and vectorizing results. The generated meshes of the coronary artery are continuous and accurate for twisted and sophisticated coronary artery structures, without fragmentations. 2) Different from mesh annotations generated by the traditional marching cube method from voxel-based labels, a finer vectorized mesh of the coronary artery is reconstructed with the regularized morphology. The novel mesh annotation benefits the geometry-based segmentation network, avoiding bifurcation adhesion and point cloud dispersion in intricate branches. 3) A dataset named CCA-200 is collected, consisting of 200 CCTA images with coronary artery disease. The ground truths of 200 cases are coronary internal diameter annotations by professional radiologists. Extensive experiments verify our method on our collected dataset CCA-200 and public ASOCA dataset, with a Dice of 0.778 on CCA-200 and 0.895 on ASOCA, showing superior results. Especially, our geometry-based model generates an accurate, intact and smooth coronary artery, devoid of any fragmentations of segmented vessels.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3435714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation of the coronary artery is an important task for the quantitative analysis of coronary computed tomography angiography (CCTA) images and is being stimulated by the field of deep learning. However, the complex structures with tiny and narrow branches of the coronary artery bring it a great challenge. Coupled with the medical image limitations of low resolution and poor contrast, fragmentations of segmented vessels frequently occur in the prediction. Therefore, a geometry-based cascaded segmentation method is proposed for the coronary artery, which has the following innovations: 1) Integrating geometric deformation networks, we design a cascaded network for segmenting the coronary artery and vectorizing results. The generated meshes of the coronary artery are continuous and accurate for twisted and sophisticated coronary artery structures, without fragmentations. 2) Different from mesh annotations generated by the traditional marching cube method from voxel-based labels, a finer vectorized mesh of the coronary artery is reconstructed with the regularized morphology. The novel mesh annotation benefits the geometry-based segmentation network, avoiding bifurcation adhesion and point cloud dispersion in intricate branches. 3) A dataset named CCA-200 is collected, consisting of 200 CCTA images with coronary artery disease. The ground truths of 200 cases are coronary internal diameter annotations by professional radiologists. Extensive experiments verify our method on our collected dataset CCA-200 and public ASOCA dataset, with a Dice of 0.778 on CCA-200 and 0.895 on ASOCA, showing superior results. Especially, our geometry-based model generates an accurate, intact and smooth coronary artery, devoid of any fragmentations of segmented vessels.

基于几何的级联神经网络对冠状动脉进行分割和血管矢量化
冠状动脉的分割是冠状动脉计算机断层扫描(CCTA)图像定量分析的一项重要任务,目前正受到深度学习领域的推动。然而,冠状动脉结构复杂,分支细小而狭窄,给这项工作带来了巨大挑战。再加上医学影像分辨率低、对比度差的限制,预测中经常出现分割血管的碎片。因此,针对冠状动脉提出了一种基于几何的级联分割方法,其创新点如下:1) 结合几何变形网络,我们设计了一种级联网络,用于分割冠状动脉并将结果矢量化。生成的冠状动脉网格连续、精确,可用于扭曲和复杂的冠状动脉结构,不会出现碎裂。2) 与传统的基于体素标签的行进立方体方法生成的网格注释不同,利用正则化形态学重建的冠状动脉矢量化网格更精细。新的网格标注有利于基于几何的分割网络,避免了复杂分支中的分叉粘连和点云分散。3) 收集的数据集名为 CCA-200,由 200 张冠状动脉疾病的 CCTA 图像组成。200 个病例的地面真相是由专业放射科医生标注的冠状动脉内径。大量实验验证了我们的方法,CCA-200 和 ASOCA 数据集的 Dice 分别为 0.778 和 0.895,显示出卓越的效果。特别是,我们基于几何模型生成的冠状动脉准确、完整、光滑,没有任何分割血管的碎片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信