Assessing next-generation sequencing-based computational methods for predicting transcriptional regulators with query gene sets.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zeyu Lu, Xue Xiao, Qiang Zheng, Xinlei Wang, Lin Xu
{"title":"Assessing next-generation sequencing-based computational methods for predicting transcriptional regulators with query gene sets.","authors":"Zeyu Lu, Xue Xiao, Qiang Zheng, Xinlei Wang, Lin Xu","doi":"10.1093/bib/bbae366","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides an in-depth review of computational methods for predicting transcriptional regulators (TRs) with query gene sets. Identification of TRs is of utmost importance in many biological applications, including but not limited to elucidating biological development mechanisms, identifying key disease genes, and predicting therapeutic targets. Various computational methods based on next-generation sequencing (NGS) data have been developed in the past decade, yet no systematic evaluation of NGS-based methods has been offered. We classified these methods into two categories based on shared characteristics, namely library-based and region-based methods. We further conducted benchmark studies to evaluate the accuracy, sensitivity, coverage, and usability of NGS-based methods with molecular experimental datasets. Results show that BART, ChIP-Atlas, and Lisa have relatively better performance. Besides, we point out the limitations of NGS-based methods and explore potential directions for further improvement.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae366","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides an in-depth review of computational methods for predicting transcriptional regulators (TRs) with query gene sets. Identification of TRs is of utmost importance in many biological applications, including but not limited to elucidating biological development mechanisms, identifying key disease genes, and predicting therapeutic targets. Various computational methods based on next-generation sequencing (NGS) data have been developed in the past decade, yet no systematic evaluation of NGS-based methods has been offered. We classified these methods into two categories based on shared characteristics, namely library-based and region-based methods. We further conducted benchmark studies to evaluate the accuracy, sensitivity, coverage, and usability of NGS-based methods with molecular experimental datasets. Results show that BART, ChIP-Atlas, and Lisa have relatively better performance. Besides, we point out the limitations of NGS-based methods and explore potential directions for further improvement.

评估基于新一代测序的计算方法,利用查询基因组预测转录调节因子。
本文深入评述了利用查询基因组预测转录调控因子(TRs)的计算方法。转录调节因子的鉴定在许多生物学应用中都至关重要,包括但不限于阐明生物发展机制、鉴定关键疾病基因和预测治疗靶点。在过去十年中,基于新一代测序(NGS)数据的各种计算方法相继问世,但尚未对基于 NGS 的方法进行系统评估。我们根据这些方法的共同特点将其分为两类,即基于文库的方法和基于区域的方法。我们进一步开展了基准研究,利用分子实验数据集评估基于 NGS 方法的准确性、灵敏度、覆盖率和可用性。结果表明,BART、ChIP-Atlas 和 Lisa 的性能相对较好。此外,我们还指出了基于 NGS 方法的局限性,并探讨了进一步改进的潜在方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信