An information-theoretic approach to build hypergraphs in psychometrics.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-10-01 Epub Date: 2024-07-30 DOI:10.3758/s13428-024-02471-8
Daniele Marinazzo, Jan Van Roozendaal, Fernando E Rosas, Massimo Stella, Renzo Comolatti, Nigel Colenbier, Sebastiano Stramaglia, Yves Rosseel
{"title":"An information-theoretic approach to build hypergraphs in psychometrics.","authors":"Daniele Marinazzo, Jan Van Roozendaal, Fernando E Rosas, Massimo Stella, Renzo Comolatti, Nigel Colenbier, Sebastiano Stramaglia, Yves Rosseel","doi":"10.3758/s13428-024-02471-8","DOIUrl":null,"url":null,"abstract":"<p><p>Psychological network approaches propose to see symptoms or questionnaire items as interconnected nodes, with links between them reflecting pairwise statistical dependencies evaluated on cross-sectional, time-series, or panel data. These networks constitute an established methodology to visualise and conceptualise the interactions and relative importance of nodes/indicators, providing an important complement to other approaches such as factor analysis. However, limiting the representation to pairwise relationships can neglect potentially critical information shared by groups of three or more variables (higher-order statistical interdependencies). To overcome this important limitation, here we propose an information-theoretic framework to assess these interdependencies and consequently to use hypergraphs as representations in psychometrics. As edges in hypergraphs are capable of encompassing several nodes together, this extension can thus provide a richer account on the interactions that may exist among sets of psychological variables. Our results show how psychometric hypergraphs can highlight meaningful redundant and synergistic interactions on either simulated or state-of-the-art, re-analysed psychometric datasets. Overall, our framework extends current network approaches while leading to new ways of assessing the data that differ at their core from other methods, enriching the psychometrics toolbox, and opening promising avenues for future investigation.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02471-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Psychological network approaches propose to see symptoms or questionnaire items as interconnected nodes, with links between them reflecting pairwise statistical dependencies evaluated on cross-sectional, time-series, or panel data. These networks constitute an established methodology to visualise and conceptualise the interactions and relative importance of nodes/indicators, providing an important complement to other approaches such as factor analysis. However, limiting the representation to pairwise relationships can neglect potentially critical information shared by groups of three or more variables (higher-order statistical interdependencies). To overcome this important limitation, here we propose an information-theoretic framework to assess these interdependencies and consequently to use hypergraphs as representations in psychometrics. As edges in hypergraphs are capable of encompassing several nodes together, this extension can thus provide a richer account on the interactions that may exist among sets of psychological variables. Our results show how psychometric hypergraphs can highlight meaningful redundant and synergistic interactions on either simulated or state-of-the-art, re-analysed psychometric datasets. Overall, our framework extends current network approaches while leading to new ways of assessing the data that differ at their core from other methods, enriching the psychometrics toolbox, and opening promising avenues for future investigation.

Abstract Image

在心理测量学中构建超图的信息论方法。
心理网络方法建议将症状或问卷项目视为相互关联的节点,它们之间的联系反映了对横截面、时间序列或面板数据进行评估的成对统计依赖关系。这些网络是将节点/指标的交互作用和相对重要性可视化和概念化的既定方法,为因子分析等其他方法提供了重要补充。然而,仅限于成对关系的表述可能会忽略三个或更多变量组共享的潜在关键信息(高阶统计相互依存关系)。为了克服这一重要的局限性,我们在此提出了一个信息论框架来评估这些相互依存关系,从而在心理测量学中使用超图作为表征。由于超图中的边可以将多个节点包含在一起,因此这种扩展可以更丰富地说明心理变量集之间可能存在的相互作用。我们的研究结果表明,心理测量超图可以在模拟或最新的、重新分析过的心理测量数据集上突出有意义的冗余和协同交互作用。总之,我们的框架扩展了当前的网络方法,同时带来了评估数据的新方法,其核心与其他方法不同,丰富了心理测量学的工具箱,为未来的研究开辟了前景广阔的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信