The wisdom of the crowd with partial rankings: A Bayesian approach implementing the Thurstone model in JAGS.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-10-01 Epub Date: 2024-07-30 DOI:10.3758/s13428-024-02479-0
Lauren E Montgomery, Nora Bradford, Michael D Lee
{"title":"The wisdom of the crowd with partial rankings: A Bayesian approach implementing the Thurstone model in JAGS.","authors":"Lauren E Montgomery, Nora Bradford, Michael D Lee","doi":"10.3758/s13428-024-02479-0","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a Bayesian method for aggregating partial ranking data using the Thurstone model. Our implementation is a JAGS graphical model that allows each individual to rank any subset of items, and provides an inference about the latent true ranking of the items and the relative expertise of each individual. We demonstrate the method by analyzing data from new experiments that collected partial ranking data. In one experiment, participants were assigned subsets of items to rank; in the other experiment, participants could choose how many and which items they ranked. We show that our method works effectively for both sorts of partial ranking in applications to US city populations and the chronology of US presidents. We discuss the potential of the method for studying the wisdom of the crowd and other research problems that require aggregating incomplete or partial rankings.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02479-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a Bayesian method for aggregating partial ranking data using the Thurstone model. Our implementation is a JAGS graphical model that allows each individual to rank any subset of items, and provides an inference about the latent true ranking of the items and the relative expertise of each individual. We demonstrate the method by analyzing data from new experiments that collected partial ranking data. In one experiment, participants were assigned subsets of items to rank; in the other experiment, participants could choose how many and which items they ranked. We show that our method works effectively for both sorts of partial ranking in applications to US city populations and the chronology of US presidents. We discuss the potential of the method for studying the wisdom of the crowd and other research problems that require aggregating incomplete or partial rankings.

Abstract Image

部分排名的群众智慧:在 JAGS 中实施瑟斯通模型的贝叶斯方法。
我们利用瑟斯通模型开发了一种汇总部分排名数据的贝叶斯方法。我们的方法是一个 JAGS 图形模型,它允许每个人对任意项目子集进行排名,并提供有关项目潜在真实排名和每个人相对专长的推断。我们通过分析收集了部分排名数据的新实验数据来演示该方法。在其中一个实验中,参与者被分配了项目子集进行排序;而在另一个实验中,参与者可以选择排序的项目数量和项目内容。我们在美国城市人口和美国总统年表的应用中证明,我们的方法对这两种部分排序都有效。我们讨论了该方法在研究群众智慧和其他需要汇总不完整或部分排名的研究问题方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信