{"title":"Separation and Characterization of Therapeutic Oligonucleotide Isomer Impurities by Cyclic Ion Mobility Mass Spectrometry.","authors":"Shogo Omuro, Takao Yamaguchi, Taiji Kawase, Kenji Hirose, Tokuyuki Yoshida, Takao Inoue, Satoshi Obika","doi":"10.1021/jasms.4c00197","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic oligonucleotides such as antisense oligonucleotide (ASO) and small interfering RNA (siRNA) are among the most remarkable modalities in modern medicine. ASOs and siRNA are composed of single- or double-stranded 15-25 mer synthesized oligonucleotides, which can be used to modulate gene expression. Liquid chromatography-mass spectrometry (LC/MS) is a necessary technique for the quality control of therapeutic oligonucleotides; it is used to evaluate the quantities of target oligonucleotides and their impurities. The widely applied oligonucleotide therapeutic quantitation method uses both ultraviolet (UV) absorbance and the MS signal intensity. Peaks separated from the main peak, which contains full-length product, are generally quantitated by UV. However, coeluting impurities, such as <i>n</i> - 1 shortmers, abasic oligonucleotides, and PS → PO (phosphorothiate to phosphodiester) oligonucleotides, are quantitated by MS. These coeluting impurities can also be comprised of various isomers with the same modification, thus increasing the difficulty in their separation and relative quantitation by LC/MS. It is possible that a specific isomer with a certain structural form induces toxicities. Therefore, characterization of each isomer separation is in high demand. In this study, we separated and characterized oligonucleotide isomers by employing a cyclic ion mobility mass spectrometry (cyclic IMS) system, which allows the separation of ions with the same <i>m</i>/<i>z</i> ratio based on their structural differences. Patisiran antisense and sense strands and their <i>n</i> - 1 and abasic isomers were used as sample sequences, and their ratio characterization was achieved by cyclic IMS. In addition, we evaluated the PS → PO conversion isomers of the antisense strand of givosiran, which originally contained four PS modification sites. The PS → PO isomers exhibited specific and distinguishable mobiligram patterns. We believe that cyclic IMS is a promising method for evaluating therapeutic oligonucleotide isomers.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00197","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic oligonucleotides such as antisense oligonucleotide (ASO) and small interfering RNA (siRNA) are among the most remarkable modalities in modern medicine. ASOs and siRNA are composed of single- or double-stranded 15-25 mer synthesized oligonucleotides, which can be used to modulate gene expression. Liquid chromatography-mass spectrometry (LC/MS) is a necessary technique for the quality control of therapeutic oligonucleotides; it is used to evaluate the quantities of target oligonucleotides and their impurities. The widely applied oligonucleotide therapeutic quantitation method uses both ultraviolet (UV) absorbance and the MS signal intensity. Peaks separated from the main peak, which contains full-length product, are generally quantitated by UV. However, coeluting impurities, such as n - 1 shortmers, abasic oligonucleotides, and PS → PO (phosphorothiate to phosphodiester) oligonucleotides, are quantitated by MS. These coeluting impurities can also be comprised of various isomers with the same modification, thus increasing the difficulty in their separation and relative quantitation by LC/MS. It is possible that a specific isomer with a certain structural form induces toxicities. Therefore, characterization of each isomer separation is in high demand. In this study, we separated and characterized oligonucleotide isomers by employing a cyclic ion mobility mass spectrometry (cyclic IMS) system, which allows the separation of ions with the same m/z ratio based on their structural differences. Patisiran antisense and sense strands and their n - 1 and abasic isomers were used as sample sequences, and their ratio characterization was achieved by cyclic IMS. In addition, we evaluated the PS → PO conversion isomers of the antisense strand of givosiran, which originally contained four PS modification sites. The PS → PO isomers exhibited specific and distinguishable mobiligram patterns. We believe that cyclic IMS is a promising method for evaluating therapeutic oligonucleotide isomers.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives