Transfer learning across different chemical domains: virtual screening of organic materials with deep learning models pretrained on small molecule and chemical reaction data
Chengwei Zhang, Yushuang Zhai, Ziyang Gong, Hongliang Duan, Yuan-Bin She, Yun-Fang Yang, An Su
{"title":"Transfer learning across different chemical domains: virtual screening of organic materials with deep learning models pretrained on small molecule and chemical reaction data","authors":"Chengwei Zhang, Yushuang Zhai, Ziyang Gong, Hongliang Duan, Yuan-Bin She, Yun-Fang Yang, An Su","doi":"10.1186/s13321-024-00886-1","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning is becoming a preferred method for the virtual screening of organic materials due to its cost-effectiveness over traditional computationally demanding techniques. However, the scarcity of labeled data for organic materials poses a significant challenge for training advanced machine learning models. This study showcases the potential of utilizing databases of drug-like small molecules and chemical reactions to pretrain the BERT model, enhancing its performance in the virtual screening of organic materials. By fine-tuning the BERT models with data from five virtual screening tasks, the version pretrained with the USPTO–SMILES dataset achieved R<sup>2</sup> scores exceeding 0.94 for three tasks and over 0.81 for two others. This performance surpasses that of models pretrained on the small molecule or organic materials databases and outperforms three traditional machine learning models trained directly on virtual screening data. The success of the USPTO–SMILES pretrained BERT model can be attributed to the diverse array of organic building blocks in the USPTO database, offering a broader exploration of the chemical space. The study further suggests that accessing a reaction database with a wider range of reactions than the USPTO could further enhance model performance. Overall, this research validates the feasibility of applying transfer learning across different chemical domains for the efficient virtual screening of organic materials.</p><p><b>Scientific contribution</b></p><p>This study verifies the feasibility of applying transfer learning to large language models in different chemical fields to help organic materials perform virtual screening. Through the comparison of transfer learning from different chemical fields to a variety of organic material molecules, the high precision virtual screening of organic materials is realized.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290278/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00886-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning is becoming a preferred method for the virtual screening of organic materials due to its cost-effectiveness over traditional computationally demanding techniques. However, the scarcity of labeled data for organic materials poses a significant challenge for training advanced machine learning models. This study showcases the potential of utilizing databases of drug-like small molecules and chemical reactions to pretrain the BERT model, enhancing its performance in the virtual screening of organic materials. By fine-tuning the BERT models with data from five virtual screening tasks, the version pretrained with the USPTO–SMILES dataset achieved R2 scores exceeding 0.94 for three tasks and over 0.81 for two others. This performance surpasses that of models pretrained on the small molecule or organic materials databases and outperforms three traditional machine learning models trained directly on virtual screening data. The success of the USPTO–SMILES pretrained BERT model can be attributed to the diverse array of organic building blocks in the USPTO database, offering a broader exploration of the chemical space. The study further suggests that accessing a reaction database with a wider range of reactions than the USPTO could further enhance model performance. Overall, this research validates the feasibility of applying transfer learning across different chemical domains for the efficient virtual screening of organic materials.
Scientific contribution
This study verifies the feasibility of applying transfer learning to large language models in different chemical fields to help organic materials perform virtual screening. Through the comparison of transfer learning from different chemical fields to a variety of organic material molecules, the high precision virtual screening of organic materials is realized.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.