Synthesis, physicochemical and pharmacological characterizations of a tetra-[methylimidazolium] dihydrogen decavanadate, inhibiting the IGR39 human melanoma cells development

IF 3.8 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Taissir Aissa , Dorra Aissaoui-Zid , Wassim Moslah , Oussema Khamessi , Regaya Ksiksi , Maike Oltermann , Michael Ruck , Mohamed Faouzi Zid , Najet Srairi-Abid
{"title":"Synthesis, physicochemical and pharmacological characterizations of a tetra-[methylimidazolium] dihydrogen decavanadate, inhibiting the IGR39 human melanoma cells development","authors":"Taissir Aissa ,&nbsp;Dorra Aissaoui-Zid ,&nbsp;Wassim Moslah ,&nbsp;Oussema Khamessi ,&nbsp;Regaya Ksiksi ,&nbsp;Maike Oltermann ,&nbsp;Michael Ruck ,&nbsp;Mohamed Faouzi Zid ,&nbsp;Najet Srairi-Abid","doi":"10.1016/j.jinorgbio.2024.112672","DOIUrl":null,"url":null,"abstract":"<div><p>Melanoma is a skin cancer that arises from melanocytes and can spread quickly to the other organs of the body, if not treated early. Generally, melanoma shows an inherent resistance to conventional therapies. In this regard, new potential drugs are being developed as possible treatments for melanoma. In this paper, we report the synthesis of a new decavanadate compound with organic molecules for a potential therapeutic application. The tetra-[methylimidazolium] dihydrogen decavanadate(V) salt (C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>)<sub>4</sub>[H<sub>2</sub>V<sub>10</sub>O<sub>28</sub>] is characterized by single-crystal X-ray diffraction, by FT-IR, UV–Vis and <sup>51</sup>V NMR spectroscopy, as well as by thermal analysis (TGA and DSC). The compound crystallizes in the monoclinic centrosymmetric space group <em>P</em>2<sub>1</sub>/<em>c</em>. Its formula unit consists of one dihydrogen decavanadate anion [H<sub>2</sub>V<sub>10</sub>O<sub>28</sub>]<sup>4−</sup> and four organic 4-methylimidazolium cations (C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>)<sup>+</sup>. Important intermolecular interactions are N-H···O and O-H···O hydrogen bonds and π-π stacking interactions between the organic cations, revealed by analysis of the Hirshfeld surface and its two-dimensional fingerprint plots. Interestingly, this compound inhibits the viability of IGR39 cells with IC<sub>50</sub> values of 14.65 μM and 4 μM after 24 h and 72 h of treatment, respectively. The analysis of its effect by flow cytometry using an Annexin V-FITC/IP cell labeling, showed that (C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>)<sub>4</sub>H<sub>2</sub>V<sub>10</sub>O<sub>28</sub> compound induced IGR39 cell apoptosis and necrosis. Molecular docking studies performed against TNFR1 and GPR40, as putative targets, suggest that the (C<sub>4</sub>H<sub>7</sub>N<sub>2</sub>)<sub>4</sub>[H<sub>2</sub>V<sub>10</sub>O<sub>28</sub>] compound may act as inhibitor of these proteins, known to be overexpressed in melanoma cells. Therefore, we could consider it as a new potential metallodrug against melanoma.</p></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"260 ","pages":"Article 112672"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016201342400196X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Melanoma is a skin cancer that arises from melanocytes and can spread quickly to the other organs of the body, if not treated early. Generally, melanoma shows an inherent resistance to conventional therapies. In this regard, new potential drugs are being developed as possible treatments for melanoma. In this paper, we report the synthesis of a new decavanadate compound with organic molecules for a potential therapeutic application. The tetra-[methylimidazolium] dihydrogen decavanadate(V) salt (C4H7N2)4[H2V10O28] is characterized by single-crystal X-ray diffraction, by FT-IR, UV–Vis and 51V NMR spectroscopy, as well as by thermal analysis (TGA and DSC). The compound crystallizes in the monoclinic centrosymmetric space group P21/c. Its formula unit consists of one dihydrogen decavanadate anion [H2V10O28]4− and four organic 4-methylimidazolium cations (C4H7N2)+. Important intermolecular interactions are N-H···O and O-H···O hydrogen bonds and π-π stacking interactions between the organic cations, revealed by analysis of the Hirshfeld surface and its two-dimensional fingerprint plots. Interestingly, this compound inhibits the viability of IGR39 cells with IC50 values of 14.65 μM and 4 μM after 24 h and 72 h of treatment, respectively. The analysis of its effect by flow cytometry using an Annexin V-FITC/IP cell labeling, showed that (C4H7N2)4H2V10O28 compound induced IGR39 cell apoptosis and necrosis. Molecular docking studies performed against TNFR1 and GPR40, as putative targets, suggest that the (C4H7N2)4[H2V10O28] compound may act as inhibitor of these proteins, known to be overexpressed in melanoma cells. Therefore, we could consider it as a new potential metallodrug against melanoma.

Abstract Image

一种抑制 IGR39 人类黑色素瘤细胞发育的四[甲基咪唑鎓]二氢癸钒酸盐的合成、理化和药理特性研究
黑色素瘤是一种由黑色素细胞引发的皮肤癌,如果不及早治疗,会迅速扩散到身体的其他器官。一般来说,黑色素瘤对传统疗法有固有的抵抗力。因此,人们正在开发新的潜在药物,以治疗黑色素瘤。在本文中,我们报告了一种新的癸钒酸盐化合物与有机分子的合成,这种化合物具有潜在的治疗用途。通过单晶 X 射线衍射、傅立叶变换红外光谱、紫外可见光谱和 51V NMR 光谱以及热分析(TGA 和 DSC),对癸钒酸四[甲基咪唑]二氢(V)盐 (C4H7N2)4[H2V10O28] 进行了表征。该化合物在单斜中心对称空间群 P21/c 中结晶。其分子式单位由一个癸钒酸二氢阴离子 [H2V10O28]4- 和四个有机 4-甲基咪唑阳离子 (C4H7N2)+ 组成。重要的分子间相互作用是 N-H-O 和 O-H-O 氢键以及有机阳离子间的π-π堆积相互作用,这一点可通过分析 Hirshfeld 表面及其二维指纹图谱来揭示。有趣的是,该化合物能抑制 IGR39 细胞的活力,处理 24 小时和 72 小时后的 IC50 值分别为 14.65 μM 和 4 μM。使用 Annexin V-FITC/IP 细胞标记的流式细胞仪分析其作用表明,(C4H7N2)4H2V10O28 化合物能诱导 IGR39 细胞凋亡和坏死。针对 TNFR1 和 GPR40(假定靶点)进行的分子对接研究表明,(C4H7N2)4[H2V10O28] 复合物可能是这些蛋白质的抑制剂,而这些蛋白质已知在黑色素瘤细胞中过度表达。因此,我们可以将其视为一种潜在的抗黑色素瘤金属药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inorganic Biochemistry
Journal of Inorganic Biochemistry 生物-生化与分子生物学
CiteScore
7.00
自引率
10.30%
发文量
336
审稿时长
41 days
期刊介绍: The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信