Controllability of impulsive nonlinear ψ-Hilfer fractional integro-differential equations

Q3 Mathematics
A.M. Sayed Ahmed , Mahmoud A. AL-Nahhas , Othman A.M. Omar , Dimplekumar N. Chalishajar , Hamdy M. Ahmed
{"title":"Controllability of impulsive nonlinear ψ-Hilfer fractional integro-differential equations","authors":"A.M. Sayed Ahmed ,&nbsp;Mahmoud A. AL-Nahhas ,&nbsp;Othman A.M. Omar ,&nbsp;Dimplekumar N. Chalishajar ,&nbsp;Hamdy M. Ahmed","doi":"10.1016/j.rico.2024.100455","DOIUrl":null,"url":null,"abstract":"<div><p>Sufficient conditions for controllability of impulsive nonlinear integro-differential equations with <span><math><mi>ψ</mi></math></span>-Hilfer fractional derivative are established. The result are obtained by using fractional calculus and Schaefer’s fixed point theorem. Finally, a numerical examples are then provided to demonstrate the outcomes.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"16 ","pages":"Article 100455"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000857/pdfft?md5=394d52a3a799aeabda9d1ddbcbe0b632&pid=1-s2.0-S2666720724000857-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Sufficient conditions for controllability of impulsive nonlinear integro-differential equations with ψ-Hilfer fractional derivative are established. The result are obtained by using fractional calculus and Schaefer’s fixed point theorem. Finally, a numerical examples are then provided to demonstrate the outcomes.

脉冲非线性ψ-希尔费分数积分微分方程的可控性
建立了具有 ψ-Hilfer 分数导数的脉冲非线性积分微分方程可控性的充分条件。这些结果是利用分数微积分和 Schaefer 定点定理得到的。最后,还提供了一个数值示例来证明这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信