Yanyun Liu, Na Wang, Wanxi Li, Yangjie Wang, Linkun Liang
{"title":"Synthesis of GN/ MnO2 nanocomposite materials for photo-assisted supercapacitor with enhanced capacities","authors":"Yanyun Liu, Na Wang, Wanxi Li, Yangjie Wang, Linkun Liang","doi":"10.1016/j.jsamd.2024.100771","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors with the advantages of high power density and rapid discharging rate have widespread applications in energy storage. Nevertheless, their development is hindered by the limitation of low specific capacity. Traditional approaches to enhance specific capacity primarily involve incorporating foreign atoms and blending with additional reactive substances. Herein, a photo-assisted supercapacitor electrode material (GN/MnO<sub>2</sub> nanocomposite) with excellent capacity is developed. As a photoactive material, graphene generates electrons and holes with photoirradiation. As the photogenerated carriers increase, electrons are separated from the holes and stored as charges. Photoirradiation is the driving force that promotes the energy storage and conversion of supercapacitors. Although there are many reports on GN/MnO<sub>2</sub> composites, there are still few reports on the photo-assisted energy storage of this composite material. The specific capacity of this photo-assisted GN/MnO<sub>2</sub> electrode materials could reach 210 F/g with photoirradiation. It was higher than that without photoirradiation (170 F/g). The development of this study provides important theoretical guidance and practical significance for the research of photo-assisted energy storage materials, and plays a significant role in advancing the progress of energy storage devices with high specific capacity.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 3","pages":"Article 100771"},"PeriodicalIF":6.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924001023/pdfft?md5=5d5db468f53815f3cd5df8a5d222bedc&pid=1-s2.0-S2468217924001023-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924001023","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Supercapacitors with the advantages of high power density and rapid discharging rate have widespread applications in energy storage. Nevertheless, their development is hindered by the limitation of low specific capacity. Traditional approaches to enhance specific capacity primarily involve incorporating foreign atoms and blending with additional reactive substances. Herein, a photo-assisted supercapacitor electrode material (GN/MnO2 nanocomposite) with excellent capacity is developed. As a photoactive material, graphene generates electrons and holes with photoirradiation. As the photogenerated carriers increase, electrons are separated from the holes and stored as charges. Photoirradiation is the driving force that promotes the energy storage and conversion of supercapacitors. Although there are many reports on GN/MnO2 composites, there are still few reports on the photo-assisted energy storage of this composite material. The specific capacity of this photo-assisted GN/MnO2 electrode materials could reach 210 F/g with photoirradiation. It was higher than that without photoirradiation (170 F/g). The development of this study provides important theoretical guidance and practical significance for the research of photo-assisted energy storage materials, and plays a significant role in advancing the progress of energy storage devices with high specific capacity.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.