{"title":"User churn prediction hierarchical model based on graph attention convolutional neural networks","authors":"Mei Miao, Tang Miao, Zhou Long","doi":"10.23919/JCC.fa.2024-0104.202407","DOIUrl":null,"url":null,"abstract":"The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era, the quick development of telecommunications services, the implementation of the number portability policy, and the intensifying competition among operators. At the same time, users' consumption preferences and choices are evolving. Excellent churn prediction models must be created in order to accurately predict the churn tendency, since keeping existing customers is far less expensive than acquiring new ones. But conventional or learning-based algorithms can only go so far into a single subscriber's data; they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features. Additionally, the current churn prediction models have a high computational burden, a fuzzy weight distribution, and significant resource economic costs. The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures, ignoring the reference value supplied by other users with the same package. This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network (GAT-CNN) to address the aforementioned issues. The main contributions of this paper are as follows: Firstly, we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device, edge, and cloud layers. Second, we extend the use of users' own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously. Lastly, we build an integrated offline-online system for churn prediction based on the strengths of the two models, and we experimentally validate the efficacy of cloud-side collaborative training and inference. In summary, the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses.","PeriodicalId":504777,"journal":{"name":"China Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2024-0104.202407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era, the quick development of telecommunications services, the implementation of the number portability policy, and the intensifying competition among operators. At the same time, users' consumption preferences and choices are evolving. Excellent churn prediction models must be created in order to accurately predict the churn tendency, since keeping existing customers is far less expensive than acquiring new ones. But conventional or learning-based algorithms can only go so far into a single subscriber's data; they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features. Additionally, the current churn prediction models have a high computational burden, a fuzzy weight distribution, and significant resource economic costs. The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures, ignoring the reference value supplied by other users with the same package. This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network (GAT-CNN) to address the aforementioned issues. The main contributions of this paper are as follows: Firstly, we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device, edge, and cloud layers. Second, we extend the use of users' own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously. Lastly, we build an integrated offline-online system for churn prediction based on the strengths of the two models, and we experimentally validate the efficacy of cloud-side collaborative training and inference. In summary, the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses.