Candice C. Bedford, Elizabeth B. Rampe, Michael T. Thorpe, Ryan C. Ewing, Kashauna Mason, Briony Horgan, Amanda Rudolph, Mathieu G. A. Lapôtre, Prakhar Sinha, Marion Nachon, Emily Champion, Lauren Berger, Ewan Reid, Patrick C. Gray
{"title":"The Geochemical and Mineralogical Signature of Glaciovolcanism Near Þórisjökull, Iceland, and Its Implications for Glaciovolcanism on Mars","authors":"Candice C. Bedford, Elizabeth B. Rampe, Michael T. Thorpe, Ryan C. Ewing, Kashauna Mason, Briony Horgan, Amanda Rudolph, Mathieu G. A. Lapôtre, Prakhar Sinha, Marion Nachon, Emily Champion, Lauren Berger, Ewan Reid, Patrick C. Gray","doi":"10.1029/2023JE008261","DOIUrl":null,"url":null,"abstract":"<p>Candidate glaciovolcanic landforms have been identified across Mars, suggesting that volcano-ice interactions may have been relatively widespread in areas that once contained extensive surface and near-surface ice deposits. To better constrain the detection of glaciovolcanism in Mars' geological record, this study has investigated and characterized the petrology, geochemistry, and mineralogy of three intraglacial volcanoes and an interglacial volcano in the Þórisjökull area of southwest Iceland. Our results show that glaciovolcanism creates abundant, variably altered hyaloclastite and hyalotuff that is sufficiently geochemically and mineralogically distinctive from subaerially erupted lava for identification using instruments available on Mars rovers and landers. Due to the lower gravity and atmospheric pressure at the surface of Mars, hyaloclastite and hyalotuff are also more likely to form in greater abundance in Martian glaciovolcanoes. Our results support that magmatism following deglaciation likely triggers decompression melting of the shallow mantle beneath Iceland, creating systematic changes in geochemistry and mineralogy. Glaciation can also suppress magmatism at its peak, encouraging the formation of shallow fractionated magma chambers. As such, it is possible for the crustal loading of an ice cap to enhance igneous diversity on a planet without plate tectonism, creating glass-rich, altered, and mineralogically diverse deposits such as those discovered in Gale crater by the Curiosity rover. However, as the eroded products of glaciovolcanism are similar to those formed through hydrovolcanism, the presence of a glaciovolcanic landform at the source is required to confirm whether volcano-ice interactions occurred at the sediment source.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008261","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008261","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Candidate glaciovolcanic landforms have been identified across Mars, suggesting that volcano-ice interactions may have been relatively widespread in areas that once contained extensive surface and near-surface ice deposits. To better constrain the detection of glaciovolcanism in Mars' geological record, this study has investigated and characterized the petrology, geochemistry, and mineralogy of three intraglacial volcanoes and an interglacial volcano in the Þórisjökull area of southwest Iceland. Our results show that glaciovolcanism creates abundant, variably altered hyaloclastite and hyalotuff that is sufficiently geochemically and mineralogically distinctive from subaerially erupted lava for identification using instruments available on Mars rovers and landers. Due to the lower gravity and atmospheric pressure at the surface of Mars, hyaloclastite and hyalotuff are also more likely to form in greater abundance in Martian glaciovolcanoes. Our results support that magmatism following deglaciation likely triggers decompression melting of the shallow mantle beneath Iceland, creating systematic changes in geochemistry and mineralogy. Glaciation can also suppress magmatism at its peak, encouraging the formation of shallow fractionated magma chambers. As such, it is possible for the crustal loading of an ice cap to enhance igneous diversity on a planet without plate tectonism, creating glass-rich, altered, and mineralogically diverse deposits such as those discovered in Gale crater by the Curiosity rover. However, as the eroded products of glaciovolcanism are similar to those formed through hydrovolcanism, the presence of a glaciovolcanic landform at the source is required to confirm whether volcano-ice interactions occurred at the sediment source.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.