Optimal measurement-based cost gradient estimate for feedback real-time optimization

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lucas Ferreira Bernardino, Sigurd Skogestad
{"title":"Optimal measurement-based cost gradient estimate for feedback real-time optimization","authors":"Lucas Ferreira Bernardino,&nbsp;Sigurd Skogestad","doi":"10.1016/j.compchemeng.2024.108815","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a simple and efficient way of estimating the steady-state cost gradient <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> based on available uncertain measurements <span><math><mi>y</mi></math></span>. The main motivation is to control <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> to zero in order to minimize the economic cost <span><math><mi>J</mi></math></span>. For this purpose, it is shown that the optimal cost gradient estimate for unconstrained operation is simply <span><math><mrow><msub><mrow><mover><mrow><mi>J</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>u</mi></mrow></msub><mo>=</mo><mi>H</mi><mrow><mo>(</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>−</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>H</mi></math></span> is a constant matrix, <span><math><msub><mrow><mi>y</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is the vector of measurements and <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is their nominally unconstrained optimal value. The derivation of the optimal <span><math><mi>H</mi></math></span>-matrix is based on existing methods for self-optimizing control and therefore the result is exact for a convex quadratic economic cost <span><math><mi>J</mi></math></span> with linear constraints and measurements. The optimality holds locally in other cases. For the constrained case, the unconstrained gradient estimate <span><math><msub><mrow><mover><mrow><mi>J</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>u</mi></mrow></msub></math></span> should be multiplied by the nullspace of the active constraints and the resulting “reduced gradient” controlled to zero.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"189 ","pages":"Article 108815"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424002333/pdfft?md5=a98cf7660f075255475fa08c633293d7&pid=1-s2.0-S0098135424002333-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002333","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a simple and efficient way of estimating the steady-state cost gradient Ju based on available uncertain measurements y. The main motivation is to control Ju to zero in order to minimize the economic cost J. For this purpose, it is shown that the optimal cost gradient estimate for unconstrained operation is simply Jˆu=H(ymy) where H is a constant matrix, ym is the vector of measurements and y is their nominally unconstrained optimal value. The derivation of the optimal H-matrix is based on existing methods for self-optimizing control and therefore the result is exact for a convex quadratic economic cost J with linear constraints and measurements. The optimality holds locally in other cases. For the constrained case, the unconstrained gradient estimate Jˆu should be multiplied by the nullspace of the active constraints and the resulting “reduced gradient” controlled to zero.

基于测量的最佳成本梯度估计,用于反馈实时优化
本研究提出了一种基于可用不确定测量值 y 估算稳态成本梯度 Ju 的简单而有效的方法,其主要动机是将 Ju 控制为零,以最小化经济成本 J。最优 H 矩阵的推导基于现有的自优化控制方法,因此对于具有线性约束和测量的凸二次经济成本 J,结果是精确的。最优性在其他情况下也是局部成立的。对于有约束的情况,应将无约束梯度估计值 Jˆu 乘以有源约束的无效空间,并将所得到的 "降低梯度 "控制为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信