{"title":"Optimal measurement-based cost gradient estimate for feedback real-time optimization","authors":"Lucas Ferreira Bernardino, Sigurd Skogestad","doi":"10.1016/j.compchemeng.2024.108815","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a simple and efficient way of estimating the steady-state cost gradient <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> based on available uncertain measurements <span><math><mi>y</mi></math></span>. The main motivation is to control <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> to zero in order to minimize the economic cost <span><math><mi>J</mi></math></span>. For this purpose, it is shown that the optimal cost gradient estimate for unconstrained operation is simply <span><math><mrow><msub><mrow><mover><mrow><mi>J</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>u</mi></mrow></msub><mo>=</mo><mi>H</mi><mrow><mo>(</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>−</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>H</mi></math></span> is a constant matrix, <span><math><msub><mrow><mi>y</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is the vector of measurements and <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> is their nominally unconstrained optimal value. The derivation of the optimal <span><math><mi>H</mi></math></span>-matrix is based on existing methods for self-optimizing control and therefore the result is exact for a convex quadratic economic cost <span><math><mi>J</mi></math></span> with linear constraints and measurements. The optimality holds locally in other cases. For the constrained case, the unconstrained gradient estimate <span><math><msub><mrow><mover><mrow><mi>J</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>u</mi></mrow></msub></math></span> should be multiplied by the nullspace of the active constraints and the resulting “reduced gradient” controlled to zero.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"189 ","pages":"Article 108815"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424002333/pdfft?md5=a98cf7660f075255475fa08c633293d7&pid=1-s2.0-S0098135424002333-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002333","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a simple and efficient way of estimating the steady-state cost gradient based on available uncertain measurements . The main motivation is to control to zero in order to minimize the economic cost . For this purpose, it is shown that the optimal cost gradient estimate for unconstrained operation is simply where is a constant matrix, is the vector of measurements and is their nominally unconstrained optimal value. The derivation of the optimal -matrix is based on existing methods for self-optimizing control and therefore the result is exact for a convex quadratic economic cost with linear constraints and measurements. The optimality holds locally in other cases. For the constrained case, the unconstrained gradient estimate should be multiplied by the nullspace of the active constraints and the resulting “reduced gradient” controlled to zero.
本研究提出了一种基于可用不确定测量值 y 估算稳态成本梯度 Ju 的简单而有效的方法,其主要动机是将 Ju 控制为零,以最小化经济成本 J。最优 H 矩阵的推导基于现有的自优化控制方法,因此对于具有线性约束和测量的凸二次经济成本 J,结果是精确的。最优性在其他情况下也是局部成立的。对于有约束的情况,应将无约束梯度估计值 Jˆu 乘以有源约束的无效空间,并将所得到的 "降低梯度 "控制为零。
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.