The effect of spatio-temporal sample imbalance in epidemiologic surveillance using opportunistic samples: An ecological study using real and simulated self-reported COVID-19 symptom data

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Alejandro Rozo Posada , Christel Faes , Philippe Beutels , Koen Pepermans , Niel Hens , Pierre Van Damme , Thomas Neyens
{"title":"The effect of spatio-temporal sample imbalance in epidemiologic surveillance using opportunistic samples: An ecological study using real and simulated self-reported COVID-19 symptom data","authors":"Alejandro Rozo Posada ,&nbsp;Christel Faes ,&nbsp;Philippe Beutels ,&nbsp;Koen Pepermans ,&nbsp;Niel Hens ,&nbsp;Pierre Van Damme ,&nbsp;Thomas Neyens","doi":"10.1016/j.sste.2024.100676","DOIUrl":null,"url":null,"abstract":"<div><p>Open surveys complementing surveillance programs often yield opportunistically sampled data characterised by spatio-temporal imbalance. We set up our study to understand to what extent spatio-temporal statistical models using such data achieve in describing epidemiological trends. We used self-reported symptomatic COVID-19 data from two Belgian regions, Flanders and the Brussels-Capital Region. These data were collected in a large-scale open survey with spatio-temporally imbalanced participation rates. We compared incidence estimates of both self-reported symptoms and test-confirmed COVID-19 cases obtained through generalised linear mixed models correcting for spatio-temporal correlation. We additionally simulated symptom incidences under different sampling strategies to explore the impact of sample imbalance, sample size and disease incidence, on trend detection. Our study shows that spatio-temporal sample imbalance generally does not lead to bad model performances in spatio-temporal trend estimation and high-risk area detection. Except for low-incidence diseases, collecting large samples will often be more essential than ensuring spatio-temporally sample balance.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"50 ","pages":"Article 100676"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Open surveys complementing surveillance programs often yield opportunistically sampled data characterised by spatio-temporal imbalance. We set up our study to understand to what extent spatio-temporal statistical models using such data achieve in describing epidemiological trends. We used self-reported symptomatic COVID-19 data from two Belgian regions, Flanders and the Brussels-Capital Region. These data were collected in a large-scale open survey with spatio-temporally imbalanced participation rates. We compared incidence estimates of both self-reported symptoms and test-confirmed COVID-19 cases obtained through generalised linear mixed models correcting for spatio-temporal correlation. We additionally simulated symptom incidences under different sampling strategies to explore the impact of sample imbalance, sample size and disease incidence, on trend detection. Our study shows that spatio-temporal sample imbalance generally does not lead to bad model performances in spatio-temporal trend estimation and high-risk area detection. Except for low-incidence diseases, collecting large samples will often be more essential than ensuring spatio-temporally sample balance.

使用机会性样本进行流行病学监测时,时空样本不平衡的影响:一项使用真实和模拟自我报告的 COVID-19 症状数据进行的生态研究
作为监测计划补充的公开调查通常会产生具有时空不平衡特征的机会性采样数据。我们的研究旨在了解使用此类数据的时空统计模型在多大程度上能够描述流行病学趋势。我们使用了比利时两个大区(佛兰德斯大区和布鲁塞尔首都大区)的自报症状 COVID-19 数据。这些数据是通过大规模公开调查收集的,调查参与率在时空上不平衡。我们比较了通过广义线性混合模型校正时空相关性后得到的自我报告症状和检测证实的 COVID-19 病例的发病率估计值。此外,我们还模拟了不同抽样策略下的症状发病率,以探讨样本不平衡、样本大小和疾病发病率对趋势检测的影响。研究结果表明,时空样本不平衡一般不会导致模型在时空趋势估计和高风险区域检测中表现不佳。除低发疾病外,收集大量样本往往比确保时空样本平衡更为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信