Contrastive adversarial gender debiasing

Nicolás Torres
{"title":"Contrastive adversarial gender debiasing","authors":"Nicolás Torres","doi":"10.1016/j.nlp.2024.100092","DOIUrl":null,"url":null,"abstract":"<div><p>This research contributes a comprehensive analysis of gender bias within contemporary AI language models, specifically examining iterations of the GPT series, alongside Gemini and Llama. The study offers a systematic investigation, encompassing multiple experiments spanning sentence completions, generative narratives, bilingual analysis, and visual perception assessments. The primary objective is to scrutinize the evolution of gender bias in these models across iterations, explore biases in professions and contexts, and evaluate multilingual disparities. Notably, the analyses reveal a marked evolution in GPT iterations, with GPT4 showcasing significantly reduced or negligible biases, signifying substantial advancements in bias mitigation. Professions and contexts exhibit model biases, indicating associations with specific genders. Multilingual evaluations demonstrate subtle disparities in gender bias tendencies between English and Spanish narratives. To effectively mitigate these biases, we propose a novel Contrastive Adversarial Gender Debiasing (CAGD) method that synergistically combines contrastive learning and adversarial training techniques. The CAGD method enables language models to learn gender-neutral representations while promoting robustness against gender biases, consistently outperforming original and adversarially debiased models across various tasks and metrics. These findings underscore the complexity of gender bias in AI language models, emphasizing the need for continual bias mitigation strategies, such as the proposed CAGD approach, and ethical considerations in AI development and deployment.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"8 ","pages":"Article 100092"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719124000402/pdfft?md5=8cd94a1ff5d32d6fad021f90862cb81a&pid=1-s2.0-S2949719124000402-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research contributes a comprehensive analysis of gender bias within contemporary AI language models, specifically examining iterations of the GPT series, alongside Gemini and Llama. The study offers a systematic investigation, encompassing multiple experiments spanning sentence completions, generative narratives, bilingual analysis, and visual perception assessments. The primary objective is to scrutinize the evolution of gender bias in these models across iterations, explore biases in professions and contexts, and evaluate multilingual disparities. Notably, the analyses reveal a marked evolution in GPT iterations, with GPT4 showcasing significantly reduced or negligible biases, signifying substantial advancements in bias mitigation. Professions and contexts exhibit model biases, indicating associations with specific genders. Multilingual evaluations demonstrate subtle disparities in gender bias tendencies between English and Spanish narratives. To effectively mitigate these biases, we propose a novel Contrastive Adversarial Gender Debiasing (CAGD) method that synergistically combines contrastive learning and adversarial training techniques. The CAGD method enables language models to learn gender-neutral representations while promoting robustness against gender biases, consistently outperforming original and adversarially debiased models across various tasks and metrics. These findings underscore the complexity of gender bias in AI language models, emphasizing the need for continual bias mitigation strategies, such as the proposed CAGD approach, and ethical considerations in AI development and deployment.

对比对抗性的性别去伪存真
本研究对当代人工智能语言模型中的性别偏见进行了全面分析,特别是对 GPT 系列的迭代版本以及 Gemini 和 Llama 进行了研究。这项研究提供了一个系统性的调查,包括多个实验,涵盖句子补全、生成叙事、双语分析和视觉感知评估。研究的主要目的是仔细观察这些模型在不同迭代过程中的性别偏见演变,探索职业和语境中的偏见,并评估多语言差异。值得注意的是,分析表明 GPT 迭代中出现了明显的演变,其中 GPT4 显示偏差显著减少或可忽略不计,这表明在减轻偏差方面取得了重大进展。职业和语境显示出模型偏差,表明与特定性别存在关联。多语言评估表明,英语和西班牙语叙事中的性别偏见倾向存在细微差别。为了有效缓解这些偏差,我们提出了一种新颖的对比对抗性别消除(CAGD)方法,该方法将对比学习和对抗训练技术协同结合在一起。CAGD 方法能让语言模型在学习性别中性表征的同时,提高对性别偏见的稳健性,在各种任务和指标中的表现始终优于原始模型和对抗性去性别化模型。这些发现凸显了人工智能语言模型中性别偏见的复杂性,强调了在人工智能开发和部署过程中需要持续的偏见缓解策略(如拟议的 CAGD 方法)和伦理考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信