A deep learning based broadcast approach for image semantic communication over fading channels

K. Ma, Yuxuan Shi, Shao Shuo, Meixia Tao
{"title":"A deep learning based broadcast approach for image semantic communication over fading channels","authors":"K. Ma, Yuxuan Shi, Shao Shuo, Meixia Tao","doi":"10.23919/JCC.fa.2023-0773.202407","DOIUrl":null,"url":null,"abstract":"We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel, with a finite number of channel states. A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states. We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding (JSCC) scheme. Specifically, we utilize the neural network (NN) to jointly optimize the hierarchical image compression and superposition code mapping within this scheme. The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side, in each channel state. The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.","PeriodicalId":504777,"journal":{"name":"China Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2023-0773.202407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel, with a finite number of channel states. A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states. We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding (JSCC) scheme. Specifically, we utilize the neural network (NN) to jointly optimize the hierarchical image compression and superposition code mapping within this scheme. The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side, in each channel state. The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.
基于深度学习的衰减信道图像语义通信广播方法
我们考虑了时变衰减高斯多输入多输出信道中的图像语义通信系统,该信道具有有限数量的信道状态。我们提出了一种深度学习辅助广播方法方案,以便在不同信道状态下实现自适应语义传输。我们将经典广播方法与图像变换器相结合,实现了这种自适应联合信源和信道编码(JSCC)方案。具体来说,我们利用神经网络(NN)来共同优化该方案中的分层图像压缩和叠加编码映射。学习到的变换器和编码本可以在每个信道状态下以自适应的质量和低错误率在接收端恢复图像。仿真结果表明,我们提出的方案能根据当前信道状态动态调整编码,优于一些采用固定编码块的现有智能方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信