Observational constraints on FLRW, Bianchi type I and V brane models

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
R. Jalalzadeh , S. Jalalzadeh , B. Malekolkalami , Z. Davari
{"title":"Observational constraints on FLRW, Bianchi type I and V brane models","authors":"R. Jalalzadeh ,&nbsp;S. Jalalzadeh ,&nbsp;B. Malekolkalami ,&nbsp;Z. Davari","doi":"10.1016/j.dark.2024.101591","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the compatibility of Covariant Extrinsic Gravity (CEG), a braneworld scenario with an arbitrary number of non-compact extra dimensions, with current cosmological observations. We employ the chi-square statistic and Markov Chain Monte Carlo (MCMC) methods to fit the Friedmann–Lemaître–Robertson–Walker (FLRW) and Bianchi type-I and V brane models to the latest datasets, including Hubble, Pantheon+ Supernova samples, Big Bang Nucleosynthesis (BBN), Baryon Acoustic Oscillations (BAO), and the structure growth rate, <span><math><mrow><mi>f</mi><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. Parameters for FLRW universe consist <span><math><mfenced><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(b)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(cd)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>γ</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></mfenced></math></span>, while for the Bianchi model are <span><math><mfenced><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(b)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(cd)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>γ</mi><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></mfenced></math></span>. By comparing our models to observational data, we determine the best values for cosmological parameters. For the FLRW model, these values depend on the sign of <span><math><mi>γ</mi></math></span> (which gives the time variation of gravitational constant in Hubble time unit): <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> yields <span><math><mrow><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0000</mn><msubsup><mrow><mn>8</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00011</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00015</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>01</mn><msubsup><mrow><mn>4</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>022</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>024</mn></mrow></msubsup></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span> leads to <span><math><mrow><mi>γ</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>022</mn><msubsup><mrow><mn>6</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0062</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0054</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>02</mn><msubsup><mrow><mn>3</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>041</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>039</mn></mrow></msubsup></mrow></math></span>. It should be noted that in both cases <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>&gt;</mo><mn>0</mn></mrow></math></span>, which represents a closed universe. Similarly, for the Bianchi type-V brane model, the parameter values vary with the sign of <span><math><mi>γ</mi></math></span>, resulting in <span><math><mrow><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0008</mn><msubsup><mrow><mn>4</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00021</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00019</mn></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn><msubsup><mrow><mn>8</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0063</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0052</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>θ</mi></mrow></msubsup><mrow><mo>(</mo><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mn>4</mn><mo>.</mo><mn>1</mn><msubsup><mrow><mn>9</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msubsup></mrow></math></span> (as with the density parameter of stiff matter) for <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>γ</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>0010</mn><msubsup><mrow><mn>7</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00020</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00019</mn></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn><msubsup><mrow><mn>9</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0062</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0050</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>θ</mi></mrow></msubsup><mrow><mo>(</mo><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mn>4</mn><mo>.</mo><mn>1</mn><msubsup><mrow><mn>7</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>98</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>91</mn></mrow></msubsup></mrow></math></span> for <span><math><mrow><mi>γ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>. In both cases <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>&gt;</mo><mn>0</mn></mrow></math></span>, which represents the Bianchi type-V, because in the Bianchi type-I, <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Subsequently, utilizing these obtained best values, we analyze the behavior of key cosmological parameters such as the Hubble parameter, deceleration parameter, distance modulus, equation of state, and density parameters that characterize both matter and the geometric component of dark energy, as functions of redshift. Our results notably show that the FLRW model with <span><math><mrow><mi>γ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span> is more compatible with observational data than the Bianchi model, based on various statistical criteria.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101591"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424001730","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the compatibility of Covariant Extrinsic Gravity (CEG), a braneworld scenario with an arbitrary number of non-compact extra dimensions, with current cosmological observations. We employ the chi-square statistic and Markov Chain Monte Carlo (MCMC) methods to fit the Friedmann–Lemaître–Robertson–Walker (FLRW) and Bianchi type-I and V brane models to the latest datasets, including Hubble, Pantheon+ Supernova samples, Big Bang Nucleosynthesis (BBN), Baryon Acoustic Oscillations (BAO), and the structure growth rate, fσ8(z). Parameters for FLRW universe consist Ω0(b),Ω0(cd),Ω0(k),H0,γ,σ8, while for the Bianchi model are Ω0(b),Ω0(cd),Ω0(β),H0,γ,Ω0(θ),σ8. By comparing our models to observational data, we determine the best values for cosmological parameters. For the FLRW model, these values depend on the sign of γ (which gives the time variation of gravitational constant in Hubble time unit): γ>0 yields γ=0.000080.00011+0.00015, and Ω0(k)=0.0140.022+0.024 and γ<0 leads to γ=0.02260.0062+0.0054, and Ω0(k)=0.0230.041+0.039. It should be noted that in both cases Ω0(k)>0, which represents a closed universe. Similarly, for the Bianchi type-V brane model, the parameter values vary with the sign of γ, resulting in γ=0.000840.00021+0.00019, Ω0(β)=0.02580.0063+0.0052, and Ω0θ(×105)=4.190.75+0.67 (as with the density parameter of stiff matter) for γ>0, and γ=0.001070.00020+0.00019, Ω0(β)=0.02590.0062+0.0050, and Ω0θ(×105)=4.170.98+0.91 for γ<0. In both cases Ω0(β)>0, which represents the Bianchi type-V, because in the Bianchi type-I, β=0. Subsequently, utilizing these obtained best values, we analyze the behavior of key cosmological parameters such as the Hubble parameter, deceleration parameter, distance modulus, equation of state, and density parameters that characterize both matter and the geometric component of dark energy, as functions of redshift. Our results notably show that the FLRW model with γ<0 is more compatible with observational data than the Bianchi model, based on various statistical criteria.

对 FLRW、比安奇 I 型和 V 型rane 模型的观测约束
本研究探讨了共变外引力(CEG)--一种具有任意数量非紧凑额外维度的支链世界情景--与当前宇宙学观测的兼容性。我们采用秩方统计和马尔可夫链蒙特卡洛(MCMC)方法,将弗里德曼-勒梅特-罗伯逊-沃克(FLRW)和比安奇 I 型和 V 型星系模型与最新数据集进行拟合,包括哈勃、潘神+超新星样本、大爆炸核合成(BBN)、重子声振荡(BAO)和结构增长率 fσ8(z)。FLRW宇宙的参数包括Ω0(b),Ω0(cd),Ω0(k),H0,γ,σ8,而Bianchi模型的参数包括Ω0(b),Ω0(cd),Ω0(β),H0,γ,Ω0(θ),σ8。通过比较我们的模型和观测数据,我们确定了宇宙学参数的最佳值。对于 FLRW 模型,这些值取决于 γ 的符号(以哈勃时间单位表示引力常数的时间变化):γ>0导致γ=0.00008-0.00011+0.00015,Ω0(k)=0.014-0.022+0.024;γ<0导致γ=-0.0226-0.0062+0.0054,Ω0(k)=0.023-0.041+0.039。需要注意的是,在这两种情况下,Ω0(k)>0 都代表一个封闭的宇宙。同样,对于 Bianchi Type-V brane 模型,参数值随 γ 的符号变化,结果是 γ=0.00084-0.00021+0.00019,Ω0(β)=0.0258-0.0063+0.0052,Ω0θ(×10-5)=4。γ>0时,γ=-0.00107-0.00020+0.00019,Ω0(β)=0.0259-0.0062+0.0050,Ω0θ(×10-5)=4.17-0.98+0.91。在这两种情况下,Ω0(β)>0 都代表了 Bianchi 类型-V,因为在 Bianchi 类型-I 中,β=0。随后,我们利用这些获得的最佳值,分析了哈勃参数、减速参数、距离模量、状态方程和密度参数等关键宇宙学参数的行为,这些参数是物质和暗能量几何分量的特征,是红移的函数。我们的研究结果表明,基于各种统计标准,γ<0 的 FLRW 模型比 Bianchi 模型更符合观测数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信