{"title":"Wake flow characteristics of small wind turbine models with single- and double-rotor arrangements: A wind tunnel study","authors":"Ravi Kumar, Ojing Siram, U. Saha, Niranjan Sahoo","doi":"10.1063/5.0215625","DOIUrl":null,"url":null,"abstract":"In the multirotor system of a wind turbine, the overall power generation is greatly influenced by the placement and interaction of rotors in proximity. Thus, a great deal of study is needed to ascertain the integration strategy of small wind turbines. In this paper, the wake flow patterns have been investigated for two model wind turbines, viz., single-rotor and double-rotor arrangements operating at a low tip speed ratio. The model rotors composed of SG6043 airfoil have a similar configuration. In the single-rotor arrangement, the model rotor is placed at the center of the wind tunnel. While in the double-rotor arrangement, the model rotors are placed at an equal distance from the central line axis of the wind tunnel. To understand the wake propagation and interaction, experiments have been performed at various wind speed conditions such that the corresponding tip speed ratio is kept between 2.5 and 3. The study is, therefore, specifically focused on the wake characteristics of the rotors under low λ, and the assessment has been made within the near wake region. The span-wise and stream-wise assessments of the wake for the double rotor suggest a minimal velocity deficit close to the rotor plane and a higher deficit downstream contrary to the single-rotor configuration.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0215625","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In the multirotor system of a wind turbine, the overall power generation is greatly influenced by the placement and interaction of rotors in proximity. Thus, a great deal of study is needed to ascertain the integration strategy of small wind turbines. In this paper, the wake flow patterns have been investigated for two model wind turbines, viz., single-rotor and double-rotor arrangements operating at a low tip speed ratio. The model rotors composed of SG6043 airfoil have a similar configuration. In the single-rotor arrangement, the model rotor is placed at the center of the wind tunnel. While in the double-rotor arrangement, the model rotors are placed at an equal distance from the central line axis of the wind tunnel. To understand the wake propagation and interaction, experiments have been performed at various wind speed conditions such that the corresponding tip speed ratio is kept between 2.5 and 3. The study is, therefore, specifically focused on the wake characteristics of the rotors under low λ, and the assessment has been made within the near wake region. The span-wise and stream-wise assessments of the wake for the double rotor suggest a minimal velocity deficit close to the rotor plane and a higher deficit downstream contrary to the single-rotor configuration.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy