Determinates of investor opinion gap around IPOs: A machine learning approach

Ali Albada , Muataz Salam Al-Daweri , Rabie A. Ramadan , Khalid Al. Qatiti , Li Haoyang , Peng Shutong
{"title":"Determinates of investor opinion gap around IPOs: A machine learning approach","authors":"Ali Albada ,&nbsp;Muataz Salam Al-Daweri ,&nbsp;Rabie A. Ramadan ,&nbsp;Khalid Al. Qatiti ,&nbsp;Li Haoyang ,&nbsp;Peng Shutong","doi":"10.1016/j.iswa.2024.200420","DOIUrl":null,"url":null,"abstract":"<div><p>The current study examines the factors influencing investor opinions on issues related to listed firms during the first day of Initial Public Offerings (IPOs), focusing on a sample of 350 fixed-priced IPOs listed on the Malaysian stock exchange (Bursa Malaysia) from 2004 to 2021. This research contributes to existing literature by employing various machine learning methods, which address the limitations of traditional linear regression models commonly used in previous studies. Specifically, five methods—extra tree regressor (ETR), single feature selection (SFS), reverse single feature (RSF), recursive feature elimination (RFE), and sequential modelling feature adding (SMFA)—are utilized to assess the importance of features in predicting the investor opinion gap within the dataset.</p><p>The study's experiments indicate that these methods effectively mitigate noisy data, enhancing their reliability for this type of analysis. The findings provide valuable insights for regulators regarding safeguarding investors' rights to information disclosed in prospectuses.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200420"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324000942/pdfft?md5=f261c79633047d7bfb957563e6c75844&pid=1-s2.0-S2667305324000942-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324000942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current study examines the factors influencing investor opinions on issues related to listed firms during the first day of Initial Public Offerings (IPOs), focusing on a sample of 350 fixed-priced IPOs listed on the Malaysian stock exchange (Bursa Malaysia) from 2004 to 2021. This research contributes to existing literature by employing various machine learning methods, which address the limitations of traditional linear regression models commonly used in previous studies. Specifically, five methods—extra tree regressor (ETR), single feature selection (SFS), reverse single feature (RSF), recursive feature elimination (RFE), and sequential modelling feature adding (SMFA)—are utilized to assess the importance of features in predicting the investor opinion gap within the dataset.

The study's experiments indicate that these methods effectively mitigate noisy data, enhancing their reliability for this type of analysis. The findings provide valuable insights for regulators regarding safeguarding investors' rights to information disclosed in prospectuses.

IPO 周围投资者意见差距的决定因素:机器学习方法
本研究以 2004 年至 2021 年期间在马来西亚证券交易所(Bursa Malaysia)上市的 350 家固定价格首次公开募股(IPO)为样本,探讨了影响投资者在首次公开募股(IPO)首日对上市公司相关问题意见的因素。本研究采用多种机器学习方法,解决了以往研究中常用的传统线性回归模型的局限性,为现有文献做出了贡献。具体来说,研究采用了五种方法--额外树回归器(ETR)、单一特征选择(SFS)、反向单一特征(RSF)、递归特征消除(RFE)和序列建模特征添加(SMFA)--来评估特征在预测数据集中投资者意见差距方面的重要性。研究结果为监管机构保障投资者对招股说明书所披露信息的权利提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信