HepG2 PMM2-CDG knockout model: A versatile platform for variant and therapeutic evaluation

IF 3.7 2区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
{"title":"HepG2 PMM2-CDG knockout model: A versatile platform for variant and therapeutic evaluation","authors":"","doi":"10.1016/j.ymgme.2024.108538","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent congenital disorder of glycosylation, is an autosomal recessive disease caused by biallelic pathogenic variants in the <em>PMM2</em> gene. There is no cure for this multisystemic syndrome. Some of the therapeutic approaches that are currently in development include mannose-1-phosphate replacement therapy, drug repurposing, and the use of small chemical molecules to correct folding defects. Preclinical models are needed to evaluate the efficacy of treatments to overcome the high lethality of the available animal model. In addition, the number of variants with unknown significance is increasing in clinical settings. This study presents the generation of a cellular disease model by knocking out the <em>PMM2</em> gene in the hepatoma HepG2 cell line using CRISPR-Cas9 gene editing. The HepG2 knockout model accurately replicates the PMM2-CDG phenotype, exhibiting a complete absence of PMM2 protein and mRNA, a 90% decrease in PMM enzymatic activity, and altered ICAM-1, LAMP1 and A1AT glycoprotein patterns. The evaluation of <em>PMM2</em> disease-causing variants validates the model's utility for studying new <em>PMM2</em> clinical variants, providing insights for diagnosis and potentially for evaluating therapies. A CRISPR-Cas9-generated HepG2 knockout model accurately recapitulates the PMM2-CDG phenotype, providing a valuable tool for assessing disease-causing variants and advancing therapeutic strategies.</p></div>","PeriodicalId":18937,"journal":{"name":"Molecular genetics and metabolism","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096719224004220/pdfft?md5=d8d6d170e864f8bf3eb685da8f456edd&pid=1-s2.0-S1096719224004220-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular genetics and metabolism","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096719224004220","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent congenital disorder of glycosylation, is an autosomal recessive disease caused by biallelic pathogenic variants in the PMM2 gene. There is no cure for this multisystemic syndrome. Some of the therapeutic approaches that are currently in development include mannose-1-phosphate replacement therapy, drug repurposing, and the use of small chemical molecules to correct folding defects. Preclinical models are needed to evaluate the efficacy of treatments to overcome the high lethality of the available animal model. In addition, the number of variants with unknown significance is increasing in clinical settings. This study presents the generation of a cellular disease model by knocking out the PMM2 gene in the hepatoma HepG2 cell line using CRISPR-Cas9 gene editing. The HepG2 knockout model accurately replicates the PMM2-CDG phenotype, exhibiting a complete absence of PMM2 protein and mRNA, a 90% decrease in PMM enzymatic activity, and altered ICAM-1, LAMP1 and A1AT glycoprotein patterns. The evaluation of PMM2 disease-causing variants validates the model's utility for studying new PMM2 clinical variants, providing insights for diagnosis and potentially for evaluating therapies. A CRISPR-Cas9-generated HepG2 knockout model accurately recapitulates the PMM2-CDG phenotype, providing a valuable tool for assessing disease-causing variants and advancing therapeutic strategies.

HepG2 PMM2-CDG 基因敲除模型:变异和治疗评估的多功能平台
磷酸甘露聚糖酶 2 缺乏症(PMM2-CDG)是最常见的先天性糖基化障碍,是一种常染色体隐性遗传病,由 PMM2 基因的双倍致病变体引起。这种多系统综合征无法治愈。目前正在开发的一些治疗方法包括 1-磷酸甘露糖替代疗法、药物再利用以及使用小化学分子来纠正折叠缺陷。需要临床前模型来评估治疗效果,以克服现有动物模型致死率高的问题。此外,临床中意义不明的变异体数量也在不断增加。本研究利用 CRISPR-Cas9 基因编辑技术,在肝癌 HepG2 细胞系中敲除 PMM2 基因,从而建立细胞疾病模型。HepG2基因敲除模型准确复制了PMM2-CDG表型,表现出PMM2蛋白和mRNA完全缺失,PMM酶活性降低90%,ICAM-1、LAMP1和A1AT糖蛋白模式改变。对PMM2致病变体的评估验证了该模型在研究新的PMM2临床变体方面的实用性,为诊断和潜在的疗法评估提供了见解。CRISPR-Cas9 生成的 HepG2 基因敲除模型准确地再现了 PMM2-CDG 表型,为评估致病变异和推进治疗策略提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular genetics and metabolism
Molecular genetics and metabolism 生物-生化与分子生物学
CiteScore
5.90
自引率
7.90%
发文量
621
审稿时长
34 days
期刊介绍: Molecular Genetics and Metabolism contributes to the understanding of the metabolic and molecular basis of disease. This peer reviewed journal publishes articles describing investigations that use the tools of biochemical genetics and molecular genetics for studies of normal and disease states in humans and animal models.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信