{"title":"Planetary-Scale Wave Activity in Venus Cloud Layer Simulated by the Venus PCM","authors":"Dexin Lai, Sebastien Lebonnois, Tao Li","doi":"10.1029/2023JE008253","DOIUrl":null,"url":null,"abstract":"<p>The Venus atmosphere Superrotation (SR) is successfully simulated with the high-resolution (1.25° × 1.25° in longitude and latitude) runs of the Venus Planetary Climate Model (PCM). The results show a clear spectrum and structure of atmospheric waves, primarily with periods of 5.65 and 8.5 days. The simulation reproduces long-term quasi-periodic oscillation of the zonal wind and primary planetary-scale wave seen in observations. These oscillations occur with a period of 163–222 days, although their existence is still debated in observations. The Rossby waves show similarity in wave characteristics and angular momentum (AM) transport due to Rossby-Kelvin instability by comparing the 5.65-day wave in Venus PCM with the 5.8-day wave simulated by AFES-Venus, another Venus General Circulation Model. Similarities are also evident between the 8.5-day wave in Venus PCM and the 7-day wave obtained in AFES-Venus. The long-term variations in the AM budget indicate that the 5.65-day wave is the dominant factor of the oscillation on the SR, and the 8.5-day wave plays a secondary role. When the 5.65-day wave grows, its AM and heat transport are enhanced and accelerate (decelerate) the lower-cloud equatorial jet (cloud-top mid-latitude jets). Meanwhile, the 8.5-day wave weakens, reducing its deceleration effect on the lower-cloud equator. This further suppresses the meridional gradient of the background wind and weakens instability, leading to the decay of the 5.65-day wave. And vice versa when the 5.65-day wave decays.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008253","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008253","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Venus atmosphere Superrotation (SR) is successfully simulated with the high-resolution (1.25° × 1.25° in longitude and latitude) runs of the Venus Planetary Climate Model (PCM). The results show a clear spectrum and structure of atmospheric waves, primarily with periods of 5.65 and 8.5 days. The simulation reproduces long-term quasi-periodic oscillation of the zonal wind and primary planetary-scale wave seen in observations. These oscillations occur with a period of 163–222 days, although their existence is still debated in observations. The Rossby waves show similarity in wave characteristics and angular momentum (AM) transport due to Rossby-Kelvin instability by comparing the 5.65-day wave in Venus PCM with the 5.8-day wave simulated by AFES-Venus, another Venus General Circulation Model. Similarities are also evident between the 8.5-day wave in Venus PCM and the 7-day wave obtained in AFES-Venus. The long-term variations in the AM budget indicate that the 5.65-day wave is the dominant factor of the oscillation on the SR, and the 8.5-day wave plays a secondary role. When the 5.65-day wave grows, its AM and heat transport are enhanced and accelerate (decelerate) the lower-cloud equatorial jet (cloud-top mid-latitude jets). Meanwhile, the 8.5-day wave weakens, reducing its deceleration effect on the lower-cloud equator. This further suppresses the meridional gradient of the background wind and weakens instability, leading to the decay of the 5.65-day wave. And vice versa when the 5.65-day wave decays.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.