{"title":"Prognostic Model and Immune Response of Clear Cell Renal Cell Carcinoma Based on Co-Expression Genes Signature","authors":"Dongsheng Yang","doi":"10.1016/j.clgc.2024.102167","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The identification of reliable prognostic markers is crucial for optimizing patient management and improving clinical outcomes in clear cell renal cell carcinoma (ccRCC).</p></div><div><h3>Methods</h3><p>We used the GSE89563 dataset from the GEO database and the Kidney Clear Cell Carcinoma (KIRC) dataset from the TCGA database to develop a prognostic model based on weighted gene co-expression network analysis (WGCNA) and non-negative matrix factorization (NMF) to predict disease progression and prognosis in ccRCC.</p></div><div><h3>Result</h3><p>We utilized WGCNA to identify risk genes and applied NMF to stratify high-risk populations in ccRCC. We characterized the immune gene features of these high-risk groups and ultimately developed a risk prediction model for ccRCC patients using a Lasso regression approach. The risk score was calculated as follows: Risk score = SUM (-0.136394797 ANK3 + 0.004238138 BIVM_ERCC5 - 0.046248451 C4orf19 - 0.036013206 F2RL3 - 0.125531316 GNG7 - 0.012698109 METTL7A + 0.078462369 MSTO1 - 0.050450656 PINK1 - 0.059446590 SLC16A12 - 0.039883686 SLC2A9 + 0.083310722 TLCD1 - 0.059801739 WDR72 + 0.071430088 ZNF117).</p></div><div><h3>Conclusion</h3><p>We develop a prognostic model for clear cell renal cell carcinoma and analyzed immune response in subgroups and confirmed protein-level expression concordance.</p></div>","PeriodicalId":10380,"journal":{"name":"Clinical genitourinary cancer","volume":"22 5","pages":"Article 102167"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical genitourinary cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1558767324001381","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The identification of reliable prognostic markers is crucial for optimizing patient management and improving clinical outcomes in clear cell renal cell carcinoma (ccRCC).
Methods
We used the GSE89563 dataset from the GEO database and the Kidney Clear Cell Carcinoma (KIRC) dataset from the TCGA database to develop a prognostic model based on weighted gene co-expression network analysis (WGCNA) and non-negative matrix factorization (NMF) to predict disease progression and prognosis in ccRCC.
Result
We utilized WGCNA to identify risk genes and applied NMF to stratify high-risk populations in ccRCC. We characterized the immune gene features of these high-risk groups and ultimately developed a risk prediction model for ccRCC patients using a Lasso regression approach. The risk score was calculated as follows: Risk score = SUM (-0.136394797 ANK3 + 0.004238138 BIVM_ERCC5 - 0.046248451 C4orf19 - 0.036013206 F2RL3 - 0.125531316 GNG7 - 0.012698109 METTL7A + 0.078462369 MSTO1 - 0.050450656 PINK1 - 0.059446590 SLC16A12 - 0.039883686 SLC2A9 + 0.083310722 TLCD1 - 0.059801739 WDR72 + 0.071430088 ZNF117).
Conclusion
We develop a prognostic model for clear cell renal cell carcinoma and analyzed immune response in subgroups and confirmed protein-level expression concordance.
期刊介绍:
Clinical Genitourinary Cancer is a peer-reviewed journal that publishes original articles describing various aspects of clinical and translational research in genitourinary cancers. Clinical Genitourinary Cancer is devoted to articles on detection, diagnosis, prevention, and treatment of genitourinary cancers. The main emphasis is on recent scientific developments in all areas related to genitourinary malignancies. Specific areas of interest include clinical research and mechanistic approaches; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; and integration of various approaches.