High-fidelity simulations of Richtmyer–Meshkov flows triggered by a forward-pentagonal bubble with different Atwood numbers

IF 2.5 3区 工程技术 Q2 MECHANICS
Satyvir Singh , Salman Saud Alsaeed
{"title":"High-fidelity simulations of Richtmyer–Meshkov flows triggered by a forward-pentagonal bubble with different Atwood numbers","authors":"Satyvir Singh ,&nbsp;Salman Saud Alsaeed","doi":"10.1016/j.euromechflu.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>In fluid dynamics, the Atwood number is a dimensionless parameter that quantifies the density difference between two fluids. It is calculated as <span><math><mrow><mi>A</mi><mi>t</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> represent the densities of the respective fluids. This research employs high-fidelity numerical simulations to examine the Atwood number impacts on Richtmyer–Meshkov (RM) flows triggered by a shocked forward-pentagonal bubble. Five distinct gases — <span><math><msub><mrow><mtext>SF</mtext></mrow><mrow><mn>6</mn></mrow></msub></math></span>, Kr, Ar, Ne, and He — are considered within the forward-pentagonal bubble, encompassed by <span><math><msub><mrow><mtext>N</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> gas. In these simulations, a third-order discontinuous Galerkin approach is applied to solve a two-dimensional set of compressible Navier–Stokes-Fourier (NSF) equations for two-component gas flows. To discretize space, hierarchical modal basis functions based on orthogonal-scaled Legendre polynomials are employed. This approach simplifies the NSF equations into a set of ordinary differential equations over time, which are solved using an explicit third-order SSP Runge–Kutta algorithm. The numerical results highlight the notable impact of the Atwood number on the evolution of RM flows in the shocked forward-pentagonal bubble, a phenomenon not previously reported in the literature. The Atwood number exerts a significant influence on the flow patterns, leading to intricate wave formations, shock focusing, jet generation, and interface distortion. Moreover, a comprehensive analysis of the these impact elucidates the mechanisms driving vorticity formation during the interaction process. Additionally, the study conducts a thorough quantitative examination of the Atwood number impacts on the flow fields based on integral quantities and interface features.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 151-165"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624001110/pdfft?md5=3f2bce669d02ed1d1a574cae47d7a3d3&pid=1-s2.0-S0997754624001110-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001110","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In fluid dynamics, the Atwood number is a dimensionless parameter that quantifies the density difference between two fluids. It is calculated as At=(ρ1ρ2)/(ρ1+ρ2), where ρ1 and ρ2 represent the densities of the respective fluids. This research employs high-fidelity numerical simulations to examine the Atwood number impacts on Richtmyer–Meshkov (RM) flows triggered by a shocked forward-pentagonal bubble. Five distinct gases — SF6, Kr, Ar, Ne, and He — are considered within the forward-pentagonal bubble, encompassed by N2 gas. In these simulations, a third-order discontinuous Galerkin approach is applied to solve a two-dimensional set of compressible Navier–Stokes-Fourier (NSF) equations for two-component gas flows. To discretize space, hierarchical modal basis functions based on orthogonal-scaled Legendre polynomials are employed. This approach simplifies the NSF equations into a set of ordinary differential equations over time, which are solved using an explicit third-order SSP Runge–Kutta algorithm. The numerical results highlight the notable impact of the Atwood number on the evolution of RM flows in the shocked forward-pentagonal bubble, a phenomenon not previously reported in the literature. The Atwood number exerts a significant influence on the flow patterns, leading to intricate wave formations, shock focusing, jet generation, and interface distortion. Moreover, a comprehensive analysis of the these impact elucidates the mechanisms driving vorticity formation during the interaction process. Additionally, the study conducts a thorough quantitative examination of the Atwood number impacts on the flow fields based on integral quantities and interface features.

不同阿特伍德数的正五边形气泡引发的里氏-梅什科夫流的高保真模拟
在流体力学中,阿特伍德数是一个量化两种流体密度差的无量纲参数。其计算公式为 At=(ρ1-ρ2)/(ρ1+ρ2) ,其中 ρ1 和 ρ2 分别代表两种流体的密度。本研究采用高保真数值模拟来检验阿特伍德数对由冲击前五边形气泡引发的里氏-梅什科夫(RM)流的影响。在前五角形气泡内考虑了五种不同的气体--SF6、Kr、Ar、Ne 和 He,其中包括 N2 气体。在这些模拟中,采用了三阶非连续伽勒金方法来求解双组分气体流的二维可压缩纳维-斯托克斯-傅里叶(NSF)方程组。为了离散空间,采用了基于正交标度 Legendre 多项式的分层模态基函数。这种方法将 NSF 方程简化为一组随时间变化的常微分方程,并使用显式三阶 SSP Runge-Kutta 算法进行求解。数值结果凸显了阿特伍德数对冲击前五角形气泡中 RM 流动演化的显著影响,而这一现象在以前的文献中从未报道过。阿特伍德数对流动模式产生了重大影响,导致了复杂的波形、冲击聚焦、射流生成和界面扭曲。此外,对这些影响的全面分析阐明了相互作用过程中涡度形成的驱动机制。此外,研究还根据积分量和界面特征,对阿特伍德数对流场的影响进行了全面的定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信