Multi-criteria computational screening of [BMIM][DCA]@MOF composites for CO2 capture

IF 9.1 Q1 ENGINEERING, CHEMICAL
Mengjia Sheng, Xiang Zhang, Hongye Cheng, Zhen Song, Zhiwen Qi
{"title":"Multi-criteria computational screening of [BMIM][DCA]@MOF composites for CO2 capture","authors":"Mengjia Sheng,&nbsp;Xiang Zhang,&nbsp;Hongye Cheng,&nbsp;Zhen Song,&nbsp;Zhiwen Qi","doi":"10.1016/j.gce.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Ionic liquid (IL) can be inserted into metal organic framework (MOF) to form IL@MOF composite with enhanced properties. In this work, hypothetical IL@MOFs were computationally constructed and screened by integrating molecular simulation and convolutional neural network (CNN) for CO<sub>2</sub> capture. First, the IL [BMIM][DCA] with a large CO<sub>2</sub> solubility was inserted into 1631 pre-selected Computational-Ready Experimental (CoRE) MOFs to create hypothetical IL@MOFs. Then, given the temperature and pressure of adsorption and desorption, the CO<sub>2</sub>/N<sub>2</sub> selectivity and CO<sub>2</sub> working capacity of 700 representative IL@MOFs were assessed <em>via</em> molecular simulations. Based on the results, two CNN models were trained and used to predict the performance of other IL@MOFs, which reduces the computational costs effectively. By combining the simulation results and CNN model predictions, 22 IL@MOFs with top-ranked performance were identified. Three distinct ones IL@HABDAS, IL@GUBKUL, and IL@MARJAQ were chosen for explicit analysis. It was found that a desired balance between CO<sub>2</sub>/N<sub>2</sub> selectivity and CO<sub>2</sub> working capacity can be obtained by inserting the optimal number of IL molecules. This helps guide a novel design of IL@MOF composites with advanced performance on carbon capture.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 2","pages":"Pages 200-208"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695282400044X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic liquid (IL) can be inserted into metal organic framework (MOF) to form IL@MOF composite with enhanced properties. In this work, hypothetical IL@MOFs were computationally constructed and screened by integrating molecular simulation and convolutional neural network (CNN) for CO2 capture. First, the IL [BMIM][DCA] with a large CO2 solubility was inserted into 1631 pre-selected Computational-Ready Experimental (CoRE) MOFs to create hypothetical IL@MOFs. Then, given the temperature and pressure of adsorption and desorption, the CO2/N2 selectivity and CO2 working capacity of 700 representative IL@MOFs were assessed via molecular simulations. Based on the results, two CNN models were trained and used to predict the performance of other IL@MOFs, which reduces the computational costs effectively. By combining the simulation results and CNN model predictions, 22 IL@MOFs with top-ranked performance were identified. Three distinct ones IL@HABDAS, IL@GUBKUL, and IL@MARJAQ were chosen for explicit analysis. It was found that a desired balance between CO2/N2 selectivity and CO2 working capacity can be obtained by inserting the optimal number of IL molecules. This helps guide a novel design of IL@MOF composites with advanced performance on carbon capture.

Abstract Image

用于二氧化碳捕获的[BMIM][DCA]@MOF 复合材料的多标准计算筛选
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信