Pasquale Arpaia , Mirco Frosolone , Ludovica Gargiulo , Nicola Moccaldi , Marco Nalin , Alessandro Perin , Cosimo Puttilli
{"title":"Specific feature selection in wearable EEG-based transducers for monitoring high cognitive load in neurosurgeons","authors":"Pasquale Arpaia , Mirco Frosolone , Ludovica Gargiulo , Nicola Moccaldi , Marco Nalin , Alessandro Perin , Cosimo Puttilli","doi":"10.1016/j.csi.2024.103896","DOIUrl":null,"url":null,"abstract":"<div><p>The electroencephalographic (EEG) features for discriminating high and low cognitive load associated with fine motor activity in neurosurgeons were identified by combining wearable transducers and Machine Learning (ML). To date, in the literature, the specific impact of fine-motor tasks on surgeons’ cognitive load is poorly investigated and studies rely on the EEG features selected for cognitive load induced by other types of tasks (driving and flight contexts). In this study, the specific EEG features for detecting cognitive load associated with fine motor activity in neurosurgeons are investigated. Six neurosurgeons were EEG monitored by means of an eight-dry-channel EEG transducer during the execution of a standardized test of fine motricity assessment. The most informative EEG features of the cognitive load induced by fine motor activity were identified by exploiting the algorithm Sequential Feature Selector. In particular, five ML classifiers maximized their classification accuracy having as input the relative alpha power in Fz, O1, and O2, computed on 2-s epochs with an overlap of 50 %. These results demonstrate the feasibility of ML-supported wearable EEG solutions for monitoring persistent high cognitive load over time and alerting healthcare management.</p></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"92 ","pages":"Article 103896"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920548924000655/pdfft?md5=3b3906ab7c699d01ab9b1c865229d0c4&pid=1-s2.0-S0920548924000655-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548924000655","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The electroencephalographic (EEG) features for discriminating high and low cognitive load associated with fine motor activity in neurosurgeons were identified by combining wearable transducers and Machine Learning (ML). To date, in the literature, the specific impact of fine-motor tasks on surgeons’ cognitive load is poorly investigated and studies rely on the EEG features selected for cognitive load induced by other types of tasks (driving and flight contexts). In this study, the specific EEG features for detecting cognitive load associated with fine motor activity in neurosurgeons are investigated. Six neurosurgeons were EEG monitored by means of an eight-dry-channel EEG transducer during the execution of a standardized test of fine motricity assessment. The most informative EEG features of the cognitive load induced by fine motor activity were identified by exploiting the algorithm Sequential Feature Selector. In particular, five ML classifiers maximized their classification accuracy having as input the relative alpha power in Fz, O1, and O2, computed on 2-s epochs with an overlap of 50 %. These results demonstrate the feasibility of ML-supported wearable EEG solutions for monitoring persistent high cognitive load over time and alerting healthcare management.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.