{"title":"Synthesis of CuO nanosheets on Cu foil via one-step wet chemical process at different reaction temperatures and their photoelectrochemical performance","authors":"","doi":"10.1016/j.poly.2024.117156","DOIUrl":null,"url":null,"abstract":"<div><p>Cupric oxide (CuO) nanostructures were directly grown on copper substrate via a simple one step solution-immersion process. The films were formed by the direct oxidation of copper in aqueous solution containing sodium hydroxide (NaOH) and ammonium persulfate (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. The influence of the reaction temperature on the structural, morphological, optical and photoelectrochemical (PEC) properties of the formed copper compounds nanostructures was investigated. The XRD and Raman spectroscopy results revealed the formation of Cu(OH)<sub>2</sub>/CuO composite for the samples prepared at 3 and 25 °C, and pure CuO was obtained for the samples prepared at 45 and 55 °C. The SEM micrographs showed that the formed Cu(OH)<sub>2</sub> and CuO present a nanowire bundles and nanosheet morphology, respectively. The increase of the reaction temperature enhanced the absorbance of the CuO samples in the entire visible region. According to the photoelectrochemical measurements, the increase of the reaction temperature resulted in an improvement of the PEC response. The CuO nanosheets synthesized at 55 °C presents the highest and the most stable PEC response. A reasonable mechanism describing the formation of nanostructured copper compounds at different reaction temperatures is discussed in this paper.</p></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538724003322","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Cupric oxide (CuO) nanostructures were directly grown on copper substrate via a simple one step solution-immersion process. The films were formed by the direct oxidation of copper in aqueous solution containing sodium hydroxide (NaOH) and ammonium persulfate (NH4)2S2O8. The influence of the reaction temperature on the structural, morphological, optical and photoelectrochemical (PEC) properties of the formed copper compounds nanostructures was investigated. The XRD and Raman spectroscopy results revealed the formation of Cu(OH)2/CuO composite for the samples prepared at 3 and 25 °C, and pure CuO was obtained for the samples prepared at 45 and 55 °C. The SEM micrographs showed that the formed Cu(OH)2 and CuO present a nanowire bundles and nanosheet morphology, respectively. The increase of the reaction temperature enhanced the absorbance of the CuO samples in the entire visible region. According to the photoelectrochemical measurements, the increase of the reaction temperature resulted in an improvement of the PEC response. The CuO nanosheets synthesized at 55 °C presents the highest and the most stable PEC response. A reasonable mechanism describing the formation of nanostructured copper compounds at different reaction temperatures is discussed in this paper.
期刊介绍:
Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry.
Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.