Xiaohua Wang , Jing Zang , Yinxiang Yang , Ke Li , Dou Ye , Zhaoyan Wang , Qian Wang , Youjia Wu , Zuo Luan
{"title":"Human neural stem cells transplanted during the sequelae phase alleviate motor deficits in a rat model of cerebral palsy","authors":"Xiaohua Wang , Jing Zang , Yinxiang Yang , Ke Li , Dou Ye , Zhaoyan Wang , Qian Wang , Youjia Wu , Zuo Luan","doi":"10.1016/j.jcyt.2024.07.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Cerebral palsy (CP) is the most common physical disability in children, yet lacks an ideal animal model or effective treatment. This study aimed to develop a reliable CP model in neonatal rats and explore the effectiveness and underlying mechanisms of human neural stem cells (hNSCs) transplantation during the sequelae phase of CP.</div></div><div><h3>Methods</h3><div>Vasoconstrictor endothelin-1 (ET-1) was administered intracranially to the motor cortex and striatum of rats on postnatal day 5 to establish a CP model. hNSCs (5 × 10<sup>5</sup>/5 μL) pretreated with hypoxia (5% O<sub>2</sub> for 24 h) were transplanted near the infarct 3 weeks after ET-1 injury (the sequelae phase). The distribution and differentiation of hNSCs were observed after transplantation. Changes in neurotrophic factors, neurogenesis, angiogenesis, axonal plasticity, and motor function were analyzed.</div></div><div><h3>Results</h3><div>Neurobehavioral tests showed poor muscle strength and postural control in young ET-1 rats. Motor deficits of the left forelimb and gait abnormalities persisted into adulthood. Histopathological findings and MRI indicated the atrophy of the cortex, striatum, and adjacent corpus callosum in ET-1 rats. At 56 days after transplantation, hNSCs were widely distributed in the ipsilateral hemisphere, and differentiated into neurons, oligodendrocytes and astrocytes. Transplantation of hNSCs increased BDNF and VEGF expression, EdU<sup>+</sup> cell number in the SVZ area, RECA-1<sup>+</sup> vessel density and GAP-43 intensity around the lesion in ET-1 rats. The cylinder test revealed a significant increase in the left forelimb motor function from 28 days after transplantation, and the staircase and CatWalk tests showed improvements in fine motor function and gait parameters.</div></div><div><h3>Conclusions</h3><div>Intracerebral injection of ET-1 modelled key functional and histopathological features of CP. hNSCs transplanted during the sequelae phase of CP resulted in long-term improvement in motor performance, possibly attributed to its capacity to stimulate neurotrophic factors, facilitate neurogenesis, angiogenesis, and promote axonal plasticity.</div></div>","PeriodicalId":50597,"journal":{"name":"Cytotherapy","volume":"26 12","pages":"Pages 1491-1504"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1465324924008041","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Cerebral palsy (CP) is the most common physical disability in children, yet lacks an ideal animal model or effective treatment. This study aimed to develop a reliable CP model in neonatal rats and explore the effectiveness and underlying mechanisms of human neural stem cells (hNSCs) transplantation during the sequelae phase of CP.
Methods
Vasoconstrictor endothelin-1 (ET-1) was administered intracranially to the motor cortex and striatum of rats on postnatal day 5 to establish a CP model. hNSCs (5 × 105/5 μL) pretreated with hypoxia (5% O2 for 24 h) were transplanted near the infarct 3 weeks after ET-1 injury (the sequelae phase). The distribution and differentiation of hNSCs were observed after transplantation. Changes in neurotrophic factors, neurogenesis, angiogenesis, axonal plasticity, and motor function were analyzed.
Results
Neurobehavioral tests showed poor muscle strength and postural control in young ET-1 rats. Motor deficits of the left forelimb and gait abnormalities persisted into adulthood. Histopathological findings and MRI indicated the atrophy of the cortex, striatum, and adjacent corpus callosum in ET-1 rats. At 56 days after transplantation, hNSCs were widely distributed in the ipsilateral hemisphere, and differentiated into neurons, oligodendrocytes and astrocytes. Transplantation of hNSCs increased BDNF and VEGF expression, EdU+ cell number in the SVZ area, RECA-1+ vessel density and GAP-43 intensity around the lesion in ET-1 rats. The cylinder test revealed a significant increase in the left forelimb motor function from 28 days after transplantation, and the staircase and CatWalk tests showed improvements in fine motor function and gait parameters.
Conclusions
Intracerebral injection of ET-1 modelled key functional and histopathological features of CP. hNSCs transplanted during the sequelae phase of CP resulted in long-term improvement in motor performance, possibly attributed to its capacity to stimulate neurotrophic factors, facilitate neurogenesis, angiogenesis, and promote axonal plasticity.
期刊介绍:
The journal brings readers the latest developments in the fast moving field of cellular therapy in man. This includes cell therapy for cancer, immune disorders, inherited diseases, tissue repair and regenerative medicine. The journal covers the science, translational development and treatment with variety of cell types including hematopoietic stem cells, immune cells (dendritic cells, NK, cells, T cells, antigen presenting cells) mesenchymal stromal cells, adipose cells, nerve, muscle, vascular and endothelial cells, and induced pluripotential stem cells. We also welcome manuscripts on subcellular derivatives such as exosomes. A specific focus is on translational research that brings cell therapy to the clinic. Cytotherapy publishes original papers, reviews, position papers editorials, commentaries and letters to the editor. We welcome "Protocols in Cytotherapy" bringing standard operating procedure for production specific cell types for clinical use within the reach of the readership.