OptiSAIL: A system for the simultaneous retrieval of soil, leaf, and canopy parameters and its application to Sentinel-3 Synergy (OLCI+SLSTR) top-of-canopy reflectances

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Simon Blessing , Ralf Giering , Christiaan van der Tol
{"title":"OptiSAIL: A system for the simultaneous retrieval of soil, leaf, and canopy parameters and its application to Sentinel-3 Synergy (OLCI+SLSTR) top-of-canopy reflectances","authors":"Simon Blessing ,&nbsp;Ralf Giering ,&nbsp;Christiaan van der Tol","doi":"10.1016/j.srs.2024.100148","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the selected algorithm for the ESA climate change initiative vegetation parameters project. Multi- and hyper-spectral, multi-angular, or multi-sensor top-of-canopy reflectance data call for an efficient generic retrieval system which can improve the consistent retrieval of standard canopy parameters as albedo, Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (<em>f</em>APAR) and their uncertainties, and exploit the information to retrieve additional parameters (e.g. leaf pigments). We present a retrieval system for canopy and sub-canopy parameters (OptiSAIL), which is based on a model comprising SAIL (canopy reflectance), PROSPECT-D (leaf properties), TARTES (snow properties), a soil model (soil reflectance anisotropy, moisture effect), and a cloud contamination model. The inversion is gradient based and uses codes created by Automatic Differentiation. The full per pixel covariance-matrix of the retrieved parameters is computed. For this demonstration, single observation data from the Sentinel-3 SY_2_SYN (synergy) product is used. The results are compared with the MODIS 4-day LAI/<em>f</em>APAR product and PhenoCam site photography. OptiSAIL produces generally consistent and credible results, at least matching the quality of the technically quite different MODIS product. The system is computationally efficient with a rate of 150 pixel s<sup>−1</sup> (7 ms per pixel) for a single thread on a current desktop CPU using observations on 26 bands. Not all of the model parameters are well determined in all situations. Significant correlations between the parameters are found, which can change sign and magnitude over time. OptiSAIL appears to meet the design goals and puts real-time processing with this kind of system into reach.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"10 ","pages":"Article 100148"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666017224000324/pdfft?md5=b8326fb2acbe63e32f1a4a2583c6730e&pid=1-s2.0-S2666017224000324-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the selected algorithm for the ESA climate change initiative vegetation parameters project. Multi- and hyper-spectral, multi-angular, or multi-sensor top-of-canopy reflectance data call for an efficient generic retrieval system which can improve the consistent retrieval of standard canopy parameters as albedo, Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and their uncertainties, and exploit the information to retrieve additional parameters (e.g. leaf pigments). We present a retrieval system for canopy and sub-canopy parameters (OptiSAIL), which is based on a model comprising SAIL (canopy reflectance), PROSPECT-D (leaf properties), TARTES (snow properties), a soil model (soil reflectance anisotropy, moisture effect), and a cloud contamination model. The inversion is gradient based and uses codes created by Automatic Differentiation. The full per pixel covariance-matrix of the retrieved parameters is computed. For this demonstration, single observation data from the Sentinel-3 SY_2_SYN (synergy) product is used. The results are compared with the MODIS 4-day LAI/fAPAR product and PhenoCam site photography. OptiSAIL produces generally consistent and credible results, at least matching the quality of the technically quite different MODIS product. The system is computationally efficient with a rate of 150 pixel s−1 (7 ms per pixel) for a single thread on a current desktop CPU using observations on 26 bands. Not all of the model parameters are well determined in all situations. Significant correlations between the parameters are found, which can change sign and magnitude over time. OptiSAIL appears to meet the design goals and puts real-time processing with this kind of system into reach.

Abstract Image

OptiSAIL:同时检索土壤、叶片和冠层参数的系统及其在哨兵-3 协同(OLCI+SLSTR)冠层顶部反射率中的应用
本文介绍了欧空局气候变化倡议植被参数项目的选定算法。多光谱和超光谱、多角度或多传感器的冠层顶部反射率数据需要一个高效的通用检索系统,该系统可以改进对标准冠层参数(如反照率、叶面积指数(LAI)、吸收光合有效辐射分率(fAPAR))及其不确定性的一致检索,并利用这些信息检索其他参数(如叶片色素)。我们提出了一种冠层和亚冠层参数检索系统(OptiSAIL),该系统基于一个由 SAIL(冠层反射率)、PROSPECT-D(叶片特性)、TARTES(雪特性)、土壤模型(土壤反射率各向异性、湿度效应)和云污染模型组成的模型。反演以梯度为基础,使用自动微分创建的代码。计算出检索参数的全像素协方差矩阵。本演示使用了哨兵-3 SY_2_SYN(协同)产品的单次观测数据。结果与 MODIS 4 天 LAI/fAPAR 产品和 PhenoCam 现场摄影进行了比较。OptiSAIL 得出的结果基本一致、可信,至少与技术上完全不同的 MODIS 产品的质量相当。该系统的计算效率很高,在目前的台式机 CPU 上使用 26 个波段的观测数据,单线程的计算速度为 150 像素 s-1(每个像素 7 毫秒)。并非所有的模型参数在所有情况下都能很好地确定。参数之间存在显著的相关性,其符号和大小会随着时间的推移而改变。OptiSAIL 似乎达到了设计目标,并使此类系统的实时处理成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信