Zhengjun Mao , Xu Ma , Mimi Geng , Munan Wang , Guangsheng Gao , Yanshan Tian
{"title":"Development characteristics and quantitative analysis of cracks in root-soil complex during different growth periods under dry-wet cycles","authors":"Zhengjun Mao , Xu Ma , Mimi Geng , Munan Wang , Guangsheng Gao , Yanshan Tian","doi":"10.1016/j.bgtech.2024.100121","DOIUrl":null,"url":null,"abstract":"<div><div>Repeated wet swelling and dry shrinkage of soil leads to the gradual occurrence of cracks and the formation of a complex fracture network. In order to study the development characteristics and quantitative analysis of cracks in root-soil complex in different growth periods under dry-wet cycles, the alfalfa root-loess complex was investigated during different growth periods under different dry-wet cycles, and a dry-wet cycle experiment was conducted. The crack rate, relative area, average width, total length, and the cracks fractal dimension in the root-soil complex were extracted; the crack development characteristics of plain soil were analyzed under the PG-DWC (dry-wet cycle caused by plant water management during plant growth period), as well as the crack development characteristics of root-soil complex under PG-DWC and EC-DWC (the dry-wet cycles caused by extreme natural conditions such as continuous rain); the effects of plant roots and dry-wet cycles on soil cracks were discussed. The results showed that the average crack width, crack rate, relative crack area, and total crack length of the alfalfa root-loess complex were higher than those of the plain soil during PG-DWC. The result indicated that compared with plain soil during PG-DWC, the presence of plant roots in alfalfa root-soil complex in the same growth period promoted the cracks development to some extent. The alfalfa root-soil complex crack parameters during different growth periods were relatively stable during PG-DWC (0 dry-wet cycle). During EC-DWC (1, 3, and 5 dry-wet cycles), the alfalfa root-loess complex crack parameters increased with the number of dry-wet cycles during different growth periods. Unlike PG-DWC, the EC-DWC accelerated crack development, and the degree of crack development increased with the number of dry-wet cycles. The existence of plant roots promoted crack development and expansion in the root-soil complex to a certain extent, and the dry-wet cycle certainly promoted crack development and expansion in the root-soil complex. This result contradicts the improvement in the root-soil complex's macro-mechanical properties during plant growth, due to differences in the mechanical properties of roots and soil. The research results will provide reference for the root soil complex crack development law and the design of slope protection by vegetation.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 1","pages":"Article 100121"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeotechnics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949929124000536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Repeated wet swelling and dry shrinkage of soil leads to the gradual occurrence of cracks and the formation of a complex fracture network. In order to study the development characteristics and quantitative analysis of cracks in root-soil complex in different growth periods under dry-wet cycles, the alfalfa root-loess complex was investigated during different growth periods under different dry-wet cycles, and a dry-wet cycle experiment was conducted. The crack rate, relative area, average width, total length, and the cracks fractal dimension in the root-soil complex were extracted; the crack development characteristics of plain soil were analyzed under the PG-DWC (dry-wet cycle caused by plant water management during plant growth period), as well as the crack development characteristics of root-soil complex under PG-DWC and EC-DWC (the dry-wet cycles caused by extreme natural conditions such as continuous rain); the effects of plant roots and dry-wet cycles on soil cracks were discussed. The results showed that the average crack width, crack rate, relative crack area, and total crack length of the alfalfa root-loess complex were higher than those of the plain soil during PG-DWC. The result indicated that compared with plain soil during PG-DWC, the presence of plant roots in alfalfa root-soil complex in the same growth period promoted the cracks development to some extent. The alfalfa root-soil complex crack parameters during different growth periods were relatively stable during PG-DWC (0 dry-wet cycle). During EC-DWC (1, 3, and 5 dry-wet cycles), the alfalfa root-loess complex crack parameters increased with the number of dry-wet cycles during different growth periods. Unlike PG-DWC, the EC-DWC accelerated crack development, and the degree of crack development increased with the number of dry-wet cycles. The existence of plant roots promoted crack development and expansion in the root-soil complex to a certain extent, and the dry-wet cycle certainly promoted crack development and expansion in the root-soil complex. This result contradicts the improvement in the root-soil complex's macro-mechanical properties during plant growth, due to differences in the mechanical properties of roots and soil. The research results will provide reference for the root soil complex crack development law and the design of slope protection by vegetation.