Fine-tuning inflow prediction models: integrating optimization algorithms and TRMM data for enhanced accuracy

Enas Ali, Bilel Zerouali, Aqil Tariq, O. Katipoğlu, N. Bailek, Celso Augusto Guimarães Santos, Sherif S. M. Ghoneim, Abueza Reza Md. Towfiqul Islam
{"title":"Fine-tuning inflow prediction models: integrating optimization algorithms and TRMM data for enhanced accuracy","authors":"Enas Ali, Bilel Zerouali, Aqil Tariq, O. Katipoğlu, N. Bailek, Celso Augusto Guimarães Santos, Sherif S. M. Ghoneim, Abueza Reza Md. Towfiqul Islam","doi":"10.2166/wst.2024.222","DOIUrl":null,"url":null,"abstract":"\n This research explores machine learning algorithms for reservoir inflow prediction, including long short-term memory (LSTM), random forest (RF), and metaheuristic-optimized models. The impact of feature engineering techniques such as discrete wavelet transform (DWT) and XGBoost feature selection is investigated. LSTM shows promise, with LSTM-XGBoost exhibiting strong generalization from 179.81 m3/s RMSE (root mean square error) in training to 49.42 m3/s in testing. The RF-XGBoost and models incorporating DWT, like LSTM-DWT and RF-DWT, also perform well, underscoring the significance of feature engineering. Comparisons illustrate enhancements with DWT: LSTM and RF reduce training and testing RMSE substantially when using DWT. Metaheuristic models like MLP-ABC and LSSVR-PSO benefit from DWT as well, with the LSSVR-PSO-DWT model demonstrating excellent predictive accuracy, showing 133.97 m3/s RMSE in training and 47.08 m3/s RMSE in testing. This model synergistically combines LSSVR, PSO, and DWT, emerging as the top performers by effectively capturing intricate reservoir inflow patterns.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"60 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores machine learning algorithms for reservoir inflow prediction, including long short-term memory (LSTM), random forest (RF), and metaheuristic-optimized models. The impact of feature engineering techniques such as discrete wavelet transform (DWT) and XGBoost feature selection is investigated. LSTM shows promise, with LSTM-XGBoost exhibiting strong generalization from 179.81 m3/s RMSE (root mean square error) in training to 49.42 m3/s in testing. The RF-XGBoost and models incorporating DWT, like LSTM-DWT and RF-DWT, also perform well, underscoring the significance of feature engineering. Comparisons illustrate enhancements with DWT: LSTM and RF reduce training and testing RMSE substantially when using DWT. Metaheuristic models like MLP-ABC and LSSVR-PSO benefit from DWT as well, with the LSSVR-PSO-DWT model demonstrating excellent predictive accuracy, showing 133.97 m3/s RMSE in training and 47.08 m3/s RMSE in testing. This model synergistically combines LSSVR, PSO, and DWT, emerging as the top performers by effectively capturing intricate reservoir inflow patterns.
微调流入量预测模型:整合优化算法和 TRMM 数据以提高精度
本研究探讨了水库流入量预测的机器学习算法,包括长短期记忆(LSTM)、随机森林(RF)和元搜索优化模型。研究了离散小波变换 (DWT) 和 XGBoost 特征选择等特征工程技术的影响。LSTM 显示出良好的前景,LSTM-XGBoost 表现出很强的泛化能力,从训练中的 179.81 立方米/秒 RMSE(均方根误差)到测试中的 49.42 立方米/秒。RF-XGBoost 和包含 DWT 的模型(如 LSTM-DWT 和 RF-DWT)也表现出色,凸显了特征工程的重要性。比较显示了使用 DWT 时的改进:使用 DWT 时,LSTM 和 RF 大幅降低了训练和测试 RMSE。MLP-ABC 和 LSSVR-PSO 等元启发式模型也从 DWT 中获益,其中 LSSVR-PSO-DWT 模型显示出出色的预测准确性,在训练中显示出 133.97 m3/s RMSE,在测试中显示出 47.08 m3/s RMSE。该模型协同结合了 LSSVR、PSO 和 DWT,通过有效捕捉错综复杂的储层流入模式,成为表现最佳的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信