Klasifikasi Menggunakan Metode Random Forest untuk Awal Deteksi Diabetes Melitus Tipe 2

Reza Fauzan Nur Iskandar, D. H. Gutama, Dhina Puspasari Wijaya, Dita Danianti
{"title":"Klasifikasi Menggunakan Metode Random Forest untuk Awal Deteksi Diabetes Melitus Tipe 2","authors":"Reza Fauzan Nur Iskandar, D. H. Gutama, Dhina Puspasari Wijaya, Dita Danianti","doi":"10.31004/jutin.v7i3.26916","DOIUrl":null,"url":null,"abstract":"Type 2 diabetes mellitus (T2DM) is a chronic disease with increasing prevalence. Early detection of DMTP2 is crucial in managing and preventing this disease. In this study, we propose the use of Random Forest method for early classification of T2DM based on risk factors. The dataset was obtained from UPTD Puskesmas Jatiroto with a total of 1111 data with 6 attributes of DMTP2 factors and 1 label. In the pre-processing stage, initial data processing includes cleaning missing values, feature engineering, and separation of training and test data. Next, the Random Forest model is trained using data that has been validated using K-Fold Cross Validation. Experimental results show that the proposed model produces an average accuracy of each fold of 97%. The final stage of evaluating the model by calculating precission, recall, and F1-Score, respectively, obtained results of 95%, 97%, and 96%. Model evaluation focuses on predicted labels so that the model can predict well in the case of DMTP2 problems based on similar data configurations.","PeriodicalId":17759,"journal":{"name":"Jurnal Teknik Industri Terintegrasi","volume":"63 S292","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Industri Terintegrasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31004/jutin.v7i3.26916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic disease with increasing prevalence. Early detection of DMTP2 is crucial in managing and preventing this disease. In this study, we propose the use of Random Forest method for early classification of T2DM based on risk factors. The dataset was obtained from UPTD Puskesmas Jatiroto with a total of 1111 data with 6 attributes of DMTP2 factors and 1 label. In the pre-processing stage, initial data processing includes cleaning missing values, feature engineering, and separation of training and test data. Next, the Random Forest model is trained using data that has been validated using K-Fold Cross Validation. Experimental results show that the proposed model produces an average accuracy of each fold of 97%. The final stage of evaluating the model by calculating precission, recall, and F1-Score, respectively, obtained results of 95%, 97%, and 96%. Model evaluation focuses on predicted labels so that the model can predict well in the case of DMTP2 problems based on similar data configurations.
使用随机森林方法进行分类以早期检测 2 型糖尿病
2 型糖尿病(T2DM)是一种慢性疾病,发病率越来越高。早期发现 DMTP2 对控制和预防这种疾病至关重要。在本研究中,我们建议使用随机森林方法根据风险因素对 T2DM 进行早期分类。数据集来自 UPTD Puskesmas Jatiroto,共有 1111 个数据,包含 6 个 DMTP2 因子属性和 1 个标签。在预处理阶段,初始数据处理包括清理缺失值、特征工程以及分离训练数据和测试数据。接下来,随机森林模型将使用经过 K 折交叉验证的数据进行训练。实验结果表明,所提出的模型每一折的平均准确率为 97%。最后,通过计算准确率、召回率和 F1 分数对模型进行评估,结果分别为 95%、97% 和 96%。模型评估的重点是预测标签,以便模型在基于类似数据配置的 DMTP2 问题中能够很好地预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信