A New Modified Secant Condition for Non-linear Conjugate Gradient Methods with Global Convergence

Q4 Mathematics
Farhan Khalaf Muord, Muna M. M. Ali
{"title":"A New Modified Secant Condition for Non-linear Conjugate Gradient Methods with Global Convergence","authors":"Farhan Khalaf Muord, Muna M. M. Ali","doi":"10.52783/cana.v31.1056","DOIUrl":null,"url":null,"abstract":"The Conjugate Gradient Methods(CGM) are well-recognized techniques for handling nonlinear optimization problems. Dai and Liao (2001) employ the secant condition approach, this study utilizes the modified secant condition proposed by Yabe-Takano (2004) and Zhang and Xu (2001), which is satisfied at each iteration through the implementation of the strong Wolf-line search condition. Additionally, please provide three novel categories of conjugate gradient algorithms of this nature. We examined 15 well-known test functions. This novel approach utilises the existing gradient and function value to accurately approximate the goal function with high-order precision. The worldwide convergence of our novel algorithms is demonstrated under certain conditions. Numerical results are provided, and the efficiency is proven by comparing it to other approaches.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":"170 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.1056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The Conjugate Gradient Methods(CGM) are well-recognized techniques for handling nonlinear optimization problems. Dai and Liao (2001) employ the secant condition approach, this study utilizes the modified secant condition proposed by Yabe-Takano (2004) and Zhang and Xu (2001), which is satisfied at each iteration through the implementation of the strong Wolf-line search condition. Additionally, please provide three novel categories of conjugate gradient algorithms of this nature. We examined 15 well-known test functions. This novel approach utilises the existing gradient and function value to accurately approximate the goal function with high-order precision. The worldwide convergence of our novel algorithms is demonstrated under certain conditions. Numerical results are provided, and the efficiency is proven by comparing it to other approaches.
具有全局收敛性的非线性共轭梯度方法的新修正 Secant 条件
共轭梯度法(CGM)是处理非线性优化问题的公认技术。Dai 和 Liao(2001)采用了secant 条件方法,本研究采用了 Yabe-Takano(2004)和 Zhang 和 Xu(2001)提出的修正 secant 条件,通过实施强 Wolf 线搜索条件,在每次迭代时满足该条件。此外,我们还提供了三类新的共轭梯度算法。我们研究了 15 个著名的测试函数。这种新方法利用现有梯度和函数值,以高阶精度精确逼近目标函数。在某些条件下,我们的新算法可以在全球范围内收敛。提供了数值结果,并通过与其他方法的比较证明了其效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信